
Author: Holger Polch (Version 2.0 - 11/2011) 
 

 
 
 
 
 
 
 
 
 
 
 
 
Holger Polch 

SAP Transportation Management 9.x 

Enhancement Guide 
 

 An overview on the available enhancement techniques 
 Coding and Configuration examples 
 Tips & Tricks 

 
 
 
  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

2 

2 

Table of Content 

1 INTRODUCTION ................................................................................................................ 7 
1.1.1 Welcome to Edition 2 .................................................................................................................. 7 
1.1.2 What has been added, adjusted & removed? ............................................................................. 7 

2 GLOSSARY ........................................................................................................................ 11 

3 BOPF - OVERVIEW AND ARCHITECTURE .............................................................. 13 

3.1 BOPF - Business Object Processing Framework ....................................................................... 13 
3.1.1 BOPF Architecture ..................................................................................................................... 14 
3.1.2 Business Object Model .............................................................................................................. 15 
3.1.3 BOPF Modeling Tool .................................................................................................................. 18 

3.2 BOPF Consumer Implementation Basics ................................................................................. 21 
3.2.1 Service Manager ........................................................................................................................ 21 
3.2.2 Query ......................................................................................................................................... 21 
3.2.3 Retrieve ..................................................................................................................................... 23 
3.2.4 Retrieve By Association (Standard) ........................................................................................... 23 
3.2.5 Retrieve By Association (XBO) ................................................................................................... 23 
3.2.6 Retrieve By Association (Dependent Objects) ........................................................................... 24 
3.2.7 Do Action (Standard) ................................................................................................................. 25 
3.2.8 Do Action (Action Parameters) .................................................................................................. 26 
3.2.9 Convert Alternative Key ............................................................................................................ 26 
3.2.10 Retrieve Property ...................................................................................................................... 27 
3.2.11 Modify ....................................................................................................................................... 27 

3.3 BOPF Enhancement Workbench ............................................................................................. 30 
3.3.1 Overview ................................................................................................................................... 30 
3.3.2 First step: Creating an Enhancement Object ............................................................................. 33 
3.3.3 General remarks on creating enhancements ............................................................................ 35 
3.3.4 Creating Field Extensions .......................................................................................................... 36 
3.3.5 Creating Subnodes..................................................................................................................... 38 
3.3.6 Creating Actions ........................................................................................................................ 41 
3.3.7 Creating Action Validations ....................................................................................................... 43 
3.3.8 Creating Pre- and Post-Action Enhancements .......................................................................... 44 
3.3.9 Creating Consistency Validations .............................................................................................. 46 
3.3.10 Creating Determinations ........................................................................................................... 48 
3.3.11 Creating Queries ........................................................................................................................ 52 
3.3.12 Creating custom Business Objects............................................................................................. 55 

3.4 Advanced BOPF Topics ............................................................................................................ 57 
3.4.1 Properties .................................................................................................................................. 57 
3.4.2 Message Concept ...................................................................................................................... 60 
3.4.3 Performance in the context of BOPF ......................................................................................... 62 
3.4.4 Status & Action Management (Consistency Groups) ................................................................ 63 
3.4.5 Change Document Adapter Enhancements .............................................................................. 79 

4 TECHNIQUES FOR ENHANCING THE BUSINESS LOGIC ...................................... 86 

4.1 BAdIs ...................................................................................................................................... 86 
4.1.1 Where and how to find BAdIs related to TM ............................................................................ 86 
4.1.2 Implementing a BAdI ................................................................................................................. 86 

4.2 Process Controller Strategies .................................................................................................. 90 
4.2.1 Relevant parts of the Process Controller ................................................................................... 90 
4.2.2 Setting up a Process Controller Strategy ................................................................................... 91 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

3 

3 

4.2.3 Using the Process Controller Framework for a new process .................................................... 95 
4.2.4 Using Method Parameters ...................................................................................................... 103 

4.3 Conditions ............................................................................................................................ 105 
4.3.1 Customizing: Condition Types and Data Access Definitions .................................................... 105 
4.3.2 Creating Data Access Definitions ............................................................................................. 106 
4.3.3 Creating Condition Types ........................................................................................................ 112 
4.3.4 Assign Data Access Definitions to Condition Types ................................................................. 113 
4.3.5 Creating Conditions ................................................................................................................. 115 
4.3.6 Simulating Conditions .............................................................................................................. 118 
4.3.7 Implementing a condition call in your coding ......................................................................... 120 

4.4 Change Controller ................................................................................................................. 122 
4.4.1 Basic Concept & technical aspects .......................................................................................... 122 
4.4.2 Customizing settings for the Change Controller ...................................................................... 123 
4.4.3 Example Change Controller settings ....................................................................................... 124 
4.4.4 The Change Controller and how it works at runtime .............................................................. 129 
4.4.5 Enhancing the Change Controller ............................................................................................ 130 
4.4.6 The Trigger Concept ................................................................................................................ 132 

4.5 Implicit Enhancements.......................................................................................................... 134 
4.5.1 Use Implicit Enhancements with care ..................................................................................... 134 
4.5.2 Pre-, Post- and Overwrite Methods for existing methods....................................................... 134 

4.6 Helper Classes provided by SAP TM ...................................................................................... 138 
4.6.1 How to find SAP TM Helper Classes ........................................................................................ 138 
4.6.2 Why using SAP TM Helper Classes? ......................................................................................... 138 

5 USER INTERFACE ENHANCEMENTS ...................................................................... 140 

5.1 FPM – Floor Plan Manager .................................................................................................... 140 
5.1.1 User Interface Building Blocks ................................................................................................. 140 
5.1.2 Feeder Classes ......................................................................................................................... 141 
5.1.3 Wire Model .............................................................................................................................. 142 

5.2 FBI – Floor Plan Manager BOPF Integration .......................................................................... 144 
5.2.1 FBI View (design time) ............................................................................................................. 144 
5.2.2 FBI View Instance (runtime) .................................................................................................... 146 
5.2.3 FBI Controller (runtime) .......................................................................................................... 146 
5.2.4 Conversion Classes .................................................................................................................. 146 
5.2.5 Exit Classes .............................................................................................................................. 147 

5.3 General remarks on user interface enhancements ................................................................ 148 

5.4 Enhancing the User Interface ................................................................................................ 155 
5.4.1 Field Extensions ....................................................................................................................... 155 
5.4.2 Adding a new action to a toolbar ............................................................................................ 163 
5.4.3 Adding a new tab with data from a new BO subnode ............................................................. 167 
5.4.4 Adding a new Action to the main tool bar .............................................................................. 174 
5.4.5 Adding a new Parameter Action with a Popup ....................................................................... 177 
5.4.6 Accessing and displaying data from external sources ............................................................. 185 
5.4.7 Building a simple new User Interface ...................................................................................... 193 
5.4.8 Copying a complete FPM-based Application ........................................................................... 211 
5.4.9 Adding a Web Dynpro Application to NWBC ........................................................................... 213 

5.5 Transporting or removing UI enhancements ......................................................................... 219 

6 ENHANCING QUERIES AND POWL ......................................................................... 221 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

4 

4 

6.1 Queries ................................................................................................................................. 221 
6.1.1 General concept ...................................................................................................................... 221 
6.1.2 Maintaining the standard query enhancement table ............................................................. 222 
6.1.3 BAdI for creation of query enhancement table entries........................................................... 226 
6.1.4 Example 1: Enhancing a Custom Query ................................................................................... 226 
6.1.5 Example 2: Enhancing a Generic Result Query ........................................................................ 228 

6.2 POWL (Personal Object Work Lists) ...................................................................................... 233 
6.2.1 Creating a new POWL .............................................................................................................. 233 
6.2.2 The POWL Feeder Class ........................................................................................................... 233 
6.2.3 The POWL Action Class ............................................................................................................ 246 
6.2.4 The basic POWL Customizing .................................................................................................. 247 
6.2.5 Creating POWL Queries ........................................................................................................... 248 
6.2.6 Additional POWL Customizing ................................................................................................. 252 
6.2.7 Enhancing a standard POWL ................................................................................................... 253 
6.2.8 POWL Maintenance Reports ................................................................................................... 255 

7 ENHANCING PRINT FORMS ...................................................................................... 255 

7.1 Enhancing a standard form ................................................................................................... 258 
7.1.1 Enhancing the involved BO(s) .................................................................................................. 258 
7.1.2 Copying the standard form...................................................................................................... 259 
7.1.3 Enhancing the Print Structure of a Form ................................................................................. 259 
7.1.4 Providing data to enhanced fields ........................................................................................... 262 

7.2 Adjusting the Layout ............................................................................................................. 263 
7.2.1 Adobe LiveCycle Designer Installation..................................................................................... 263 
7.2.2 Placing additional content on the form layout ........................................................................ 263 

7.3 Creating a new form ............................................................................................................. 265 
7.3.1 Creating a print structure and table type ................................................................................ 265 
7.3.2 Creating a form interface ........................................................................................................ 266 
7.3.3 Creating the Adobe form ......................................................................................................... 267 
7.3.4 Creating required coding in the backend ................................................................................ 270 

7.4 Output Management Adapter and PPF Configuration ........................................................... 276 
7.4.1 Overview and general concepts .............................................................................................. 276 
7.4.2 Creating a PPF Action Profile and Action Definitions .............................................................. 279 
7.4.3 Creating PPF Conditions .......................................................................................................... 283 
7.4.4 Maintaining Output Management Adapter Settings ............................................................... 285 
7.4.5 Preparing an example print document.................................................................................... 287 

8 ENHANCING SERVICES ............................................................................................... 292 

8.1 General remarks on Service Enhancements .......................................................................... 292 
8.1.1 Example Service Enhancement ............................................................................................... 293 
8.1.2 Basic steps to enhance an Enterprise Service ......................................................................... 295 

8.2 Development in System Landscape Directory (SLD) .............................................................. 295 
8.2.1 Creating a Product Version and Software Component ........................................................... 295 
8.2.2 Defining dependencies between EnSWCV and SWCVs ........................................................... 298 

8.3 Development in Enterprise Service Repository (ESR) ............................................................ 300 
8.3.1 Importing the EnSWCV into ESR .............................................................................................. 300 
8.3.2 Creating a Namespace in the EnSWCV .................................................................................... 301 
8.3.3 Create a Data Type in the EnSWCV. ........................................................................................ 302 
8.3.4 Create the Data Type Enhancement for the TM side. ............................................................. 304 
8.3.5 Create an Enhancement Data Type for the ECC side. ............................................................. 307 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

5 

5 

8.4 Development in the Backend Systems .................................................................................. 311 
8.4.1 Generating the Enhancement Proxy Structure in ECC ............................................................ 311 
8.4.2 Generating the Enhancement Proxy Structure in TM ............................................................. 314 

9 ENHANCING FURTHER OBJECTS, FEATURES & FUNCTIONS ......................... 324 

9.1 Gantt Chart for Planning Functionality .................................................................................. 324 

9.2 Transportation Charge Management Enhancements ............................................................ 329 
9.2.1 Adding a new scale base.......................................................................................................... 329 
9.2.2 Adding a new calculation base ................................................................................................ 329 
9.2.3 Adding a new resolution base ................................................................................................. 329 

9.3 Master Data Objects ............................................................................................................. 330 
 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

6 

6 

Disclaimer 
This document outlines the SAP general product direction and should not be relied on in 
making a purchase decision. 
 
This document is not subject to your license agreement or any other agreement with SAP. 
SAP has no obligation to pursue any course of business outlined in this document or to 
develop or release any functionality mentioned in this document / presentation. This 
document / presentation and SAP's strategy and possible future developments are subject to 
change and may be changed by SAP at any time for any reason without notice. 
 
The information in this document is not a commitment, promise or legal obligation to deliver 
any material, code or functionality. This document is provided without a warranty of any kind, 
either express or implied, including but not limited to, the implied warranties of 
merchantability, fitness for a particular purpose, or non-infringement. SAP assumes no 
responsibility for errors or omissions in this document, and shall have no liability for damages 
of any kind including without limitation direct, special, indirect, or consequential damages that 
may result from the use of this document. 
 
All forward-looking statements are subject to various risks and uncertainties that could cause 
actual results to differ materially from expectations. Readers are cautioned not to place undue 
reliance on these forward-looking statements, which speak only as for their dates, and they 
should not be relied upon in making purchasing or any other decisions. 
 

© Copyright 2017 SAP AG. All rights reserved.  
 
No part of this publication may be reproduced or transmitted in any form or for any purpose 
without the express permission of SAP SE. The information contained herein may be 
changed without prior notice.  
 
 
 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

7 

7 

1 Introduction 

1.1.1 Welcome to Edition 2  

The first edition of the Guide turned out to be quite helpful for customers, partners, 
consultants and developers to get started with their SAP TM projects (the first edition was 
requested more than 500 times so far). What started with TM 8.0 and the first successful Go 
Lives has in the meantime developed further and SAP TM 9.5 has been finalized. 
 
While many aspects described in the first version of the Enhancement Guide are valid across 
the releases, some things have changed. As per TM 9.0 SAP NetWeaver 7.31 is used and 
with this, a few things have changed, especially in the area of the Configuration Editor for the 
FPM/FBI-based User Interfaces. With TM 9.5 SAP NetWeaver 7.50 is the foundation for the 
application. In case of differences between 7.31 and 7.50 I’ll point out to this too. 
 
This second edition therefore provides a completely revised chapter 5 dealing with User 
Interface enhancements based on the new/changed Configuration Editor environment. But 
also, the content of the other chapters was partly rewritten, adjusted and enhanced to sort out 
errors, make things a bit easier to understand and add additional information which was 
gathered during further projects, workshops and other occasions. 
 
The target of the second edition is to describe the possibilities and used technologies to 
enhance SAP Transportation Management based on release 9.1™ and following releases. 
Again, it does not intend to provide a complete and detailed description of all possible 
enhancements.  
 
It describes the usage of the available enhancement technologies based on some basic 
examples. These examples are chosen to be representative for similar enhancements in 
multiple areas of the application. In some cases, links to more detailed descriptions are 
provided. Overall, the document content is valid for all currently available SAP TM releases, 
i.e. 8.x, and 9.x. 
 

1.1.2 What has been added, adjusted & removed? 

The following table lists the topics and aspects that have been added, adjusted or removed in 
this second edition SAP TM Enhancement Guide compared to the first one: 
 

Chapter Topic Type Comment 

1 Introduction Adjusted New introduction with notes on target 
TM Release and list of changes 
compared to edition 1 of the 
Enhancement Guide. 

3.1.1 BOPF Architecture Adjusted Screenshots reworked. 

3.1.3 BOPF Modeling Tool Adjusted A few screenshots reworked. 

3.3.1ff Overview BOPF 
Enhancement Workbench 

Adjusted Reworked the examples, their 
description and related screenshots. 
New features mentioned: Creating 
customer/partner-specific BOs. 

3.3.10 Creating Determinations New New Determination Pattern available: 
Create Properties (available for 
Determinations added via 
Enhancement Workbench). 

3.3.10 Creating Determinations New Remark on best practice for adding 
Determinations  Grouping of 
Determinations. 

3.3.12 Creating custom BOs New The Enhancement Workbench allows 
creating customer/partner-specific 
Business Objects. 

3.4 Advanced BOPF Topics New BOPF Properties, BOPF Message 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

8 

8 

Concept and hints on Performance in 
the context of using BOPF. 

3.4.4 Status & Action 
Management 

New Two examples based on real 
customer enhancement use cases: 
Using S&AM to let a Validation set a 
BO node status and Using a 
Consistency Group to prevent Save 
of a transaction in case of errors. 

3.4.5 Change Document Adapter 
Enhancements 

New An example how to enhance an 
existing Change Document Object to 
also allow tracking of changes to 
Enhancement Node data. 

4.3.5 Creating Conditions Adjusted Screenshots and description on how 
to create conditions as per TM 9.0. 
UIs have slightly changed.   

4.3.6 Simulating Conditions Adjusted As per TM 9.0, the BRF+ screens for 
simulating conditions are fully 
integrated into the TM User Interface 
for handling conditions. Nevertheless 
transaction BRF+ can also still be 
used for these functionalities. 

4.4 Change Controller New The section describes the involved 
concepts and customizing for the 
Change Controller and shows 
concepts for enhancing it. 

4.5 Implicit Enhancements Adjusted Complete section rewritten and 
screen shots adjusted. One single 
how-to explanation for all available 
implicit enhancements. 

4.6 Helper Classes provided by 
SAP TM 

New When enhancing the business logic 
via additional coding in BAdIs, 
Implicit Enhancements, etc. some 
implementation tasks occur again 
and again. SAP TM provides a large 
number of so called Helper Classes 
that already provide reusable coding 
for accessing specific data and other 
functions. 

5.2.1 FBI View (design time) Adjusted Screenshot of example FBI View 
updated. 

5.3 General remarks on user 
interface enhancements 

Adjusted As per SAP TM 9.0 NW 7.31 is used 
that provides enhanced functionality 
to easily navigate to UI configurations 
to get them enhanced. 

5.4 Enhancing the User 
Interface 

Adjusted The section and its sub sections is 
completely reworked and adjusted to 
the TM 9.0 NW 7.31 environment. 

5.4.1 Field Extensions Adjusted Screen Shots adjusted to the current 
Component Configurator. 
Descriptions and example data 
reworked. 

5.4.2 Adding a new action to a 
toolbar 

Adjusted Screen Shots adjusted to the current 
Component Configurator. 
Descriptions and example data 
reworked. A few more functional 
options of the Component 
Configurator are described. The 
example is now illustrating the usage 
of related views. 

5.4.3 Adding a new tab with data Adjusted Screen Shots adjusted to the current 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

9 

9 

from a new BO subnode Configurator. Descriptions and 
example data reworked. 

5.4.4 Adding a new Action to the 
main tool bar 

Adjusted Screen Shots adjusted to the current 
Configurator. Descriptions and 
example data reworked. 

5.4.5 Adding a new Parameter 
Action with a Popup 

Adjusted Screen Shots adjusted to the current 
Configurator. Descriptions and 
example data reworked. 

5.4.6 Accessing and displaying 
data from external sources 

Adjusted Screen Shots added. Descriptions 
and example data reworked. 

5.4.7 Building a simple new User 
Interface 

Adjusted Screen Shots added. Descriptions 
and example data reworked. 
Adjusted to the current Configuration 
Editor 

5.4.8 Copying a complete FPM-
based Application 

New A specific Web Dynpro Application 
allows creating complete and deep 
copies of an existing FPM Application 

5.4.9 Adding a Web Dynpro 
Application to NWBC 

New An example to integrate a new FPM-
based (Web Dynpro) application into 
NWBC. The example integrates the 
application created in 5.4.7 based on 
a given PFCG role. 

5.5 Transporting or removing UI 
enhancements 

Adjusted Screen Shots reworked and added 
some more detailed descriptions. 

6.1 Queries Adjusted Reworked the description of the 
query enhancement concept and 
revised the enhancement examples 
(sorted out a few errors from the old 
versions). 

6.2 POWL (Personal Object 
Work Lists) 

Adjusted Reworked the example how to create 
a completely new POWL and 
adjusted the example coding 
(including error corrections in the 
coding and an extension of the 
example). 

6.2.5 Creating POWL Queries New Added a few comments on how to 
create specific settings for existing 
POWL Queries and saving them as 
Views. 

6.2.6 Additional POWL 
Customizing 

New Described a few more customizing 
transactions that allow defining 
POWLs and the assignment to roles 
and/or users. 

6.2.7 Enhancing a standard 
POWL 

New Based on the findings from section 
6.2 some basic hints how to enhance 
existing standard POWLs. 

7.1 Enhancing a standard form Adjusted Reworked description and screen 
shots. 

7.2 Adjusting the Layout Adjusted Reworked description and screen 
shots. 

7.3 Creating a new form Adjusted Reworked description and screen 
shots. 

7.4 Output Management 
Adapter and PPF 
Configuration 

Adjusted Added additional details about PPF, 
Output Management and some 
general remarks to improve 
understandability of the configuration 
example in specific and PPF 
configuration in general. All screen 
shots have been updated to reflect 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

10 

10 

the UI changes that came along with 
TM 9.x 

7.4.1 Overview and general 
concepts 

New This section provides an overview of 
the basic PPF terms and concepts as 
well as the relation between PPF and 
BOPF-implemented BOs. 

8 Enhancing further Objects, 
Features and Functions 

New This new main section is intended to 
cover cross topics and specific 
enhancements 

8.1 Gantt Chart for Planning 
Functionality 

New The section describes how to set up 
a Transportation Cockpit Layout and 
include the Gantt Chart there (new as 
per SAP TM 9.2), Id provides some 
comments and hints how this Gantt 
Chart can be configured and 
enhanced (currently only draft) 

 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

11 

11 

2 Glossary 
The following abbreviations will be used in this document: 
 

English Term English 
Abbrev. 

German 
Term (if 
applicable) 

German 
Abbrev. (if 
applicable) 

Definition 

Business Object 
Processing 
Framework 

BOPF  BOPF  

User Interface UI  UI  

Business Object BO  BO  

Business Object 
Repository 

BOR  BOR  

Business 
Application 
Development 
Interface 

BAdI  BAdI  

Transportation 
Management 

TM  TM  

Floor Plan 
Manager 

FPM  FPM  

Floor Plan 
Manager BOPF 
Integration 

FBI  FBI  

Transportation 
Management 

TM  TM  

Transportation 
Charges 
Management 

TCM  TCM  

Process 
Controller 
Framework 

PCF  PCF  

User Interface 
Building Block 

UIBB  UIBB  

Generic Interface 
Building Block 

GUIBB  GUIBB  

Post Processing 
Framework 

PPF  PPF  

Enterprise Service 
Repository 

ESR  ESR  

Software 
Component 

SWC  SWC  

Software 
Component 
Version 

SWCV  SWCV  

Enhancement 
Software 
Component 
Version 

EnSWCV  EnSWCV  

Web Dynpro 
Component 
Configuration 

WDCC  WDCC  

Change 
Document Object 

CDO  CDO  

Status & Action 
Management 

SAM  SAM  

Data Dictionary DDIC  DDIC  

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

12 

12 

 
 
 
 
 
 
 
 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

13 

13 

3 BOPF - Overview and Architecture 
SAP TM is based on a set of Frameworks that help to realize different aspects of the 
application. The Business Objects are modeled and implemented with the Business Object 
Processing Framework (BOPF). The User Interface is based on ABAP Web Dynpro and is 
realized with the Floor Plan Manager (FPM) which supports modeling, implementing and 
configuring the User Interfaces. The Floor Plan Manager BOPF Integration (FBI) is used to 
connect the Backend with the User Interface. It provides the connection between the 
Business Objects in the backend with the corresponding User Interface realized with the 
FPM. 
 
To utilize the enhancement capabilities of SAP TM, some general knowledge on these 
Frameworks is required. Besides these Frameworks, general knowledge on the following 
implementation and configuration technologies are prerequisite for creating enhancements: 
 

 BAdIs (Implementation) 

 Process Controller Strategies (Configuration) 

 Conditions (Configuration) 

 Change Controller (Configuration / Implementation) 

 Implicit Enhancements (Implementation) 

 BOPF Enhancement Workbench (Configuration / Implementation, part of the BOPF 
Framework) 

 
The mentioned frameworks and technologies shall be described in the following sections to 
provide a very basic insight on how they are involved in the SAP TM application and how they 
are used for creating enhancements. This document can for sure not cover all aspects. 
Therefore, links to more detailed information sources will be provided where appropriate. 
 

3.1 BOPF - Business Object Processing Framework 
Business Objects are the basis of the SAP TM application. Each Business Object represents 
a type of a uniquely identifiable business entity, described by a structural model, an internal 
process model as well as one or more Service Interfaces. The business processes provided 
with SAP TM operate on these Business Objects. Examples for TM Business Objects are the 
Forwarding Order or the Freight Order. 
 
BOPF controls the application business logic as well as the data retrieval of the buffer and 
persistency layer. The main design principles are a clear separation of the business logic and 
the buffering of data as well as a clear structuring of the business logic into small parts with a 
clear separation of changing and checking business logic. The BOPF approach for 
implementing business objects breaks down business logic into the following four concepts 
(described in more detail on the next pages): 
 

 Actions 

 Determinations 

 Validations 

 Queries 
 
The reason for this breakdown is to avoid the mixing of the four types of functionality into one 
single entity. This improves the potential for reusing implementations and simplifies 
maintenance by reducing the complexity and dependencies, and thereby reducing the 
development effort. 
 
 
 
 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

14 

14 

3.1.1 BOPF Architecture 
The architecture of BOPF comprises two principal areas: 
 

 Business Application, which is the heart of the application and provides an interface 
between the business data, the business logic and the end user. 

 

 BOPF Model, where the runtime configuration parameters for each of the implemented 
business objects are located. 

 
The Business Application includes specific entities that support the configuration and runtime 
operation of each business object, and offers access to the business object’s data via Buffer 
Classes and Data Access Classes. Furthermore, the Business Application includes specific 
determinations, validations, actions and associations that dictate the specific behavior for 
each and every implemented business object. 
 

 

Picture: The basic BOPF Architecture. 
 
The Business Objects are accessed only via a defined API (Service Manager). Changing and 
checking Business Logic of a BOPF Business Object is clearly separated. There is no mixture 
of methods that change the business object with methods that have the purpose to check the 
business objects consistency.  
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

15 

15 

Moreover, business logic and data buffering are clearly separated. The business logic is built 
on top of the Business Object and the buffer to behave independent of the way how data is 
buffered and where data is buffered. BOPF allows replacing buffer and data access classes 
for Business Objects. Both do not contain business Logic. 
 
Data buffer and persistency are also clearly separated from each other as well as from the 
business logic. This allows establish individual buffer and persistency implementations, i.e. 
both are exchangeable (e.g. to achieve specific performance requirements). 
 
Besides the basic BOPF architecture, the picture above also depicts the basic architecture of 
the Transportation Management User Interface. 
 

3.1.2 Business Object Model 
A Business Object is a representation of a type of uniquely identifiable business entities 
described by a structural model and an internal process model. Implemented business 
processes operate on business objects. Most important for the context of this document: A 
Business Object and its characteristics as well as its configuration settings can be enhanced. 
We’ll later see how this is done. First, let’s take a brief look at the parts a BOPF Business 
Object consists of. A BOPF Business Object model consists of the following entities: 
 

Nodes: 
A Node is a semantically related set of attributes of a business object. Nodes can be used to 
define and structure your business object. The attributes of a business object node are 
defined by dictionary data types. 

 
Nodes can be hierarchically defined and related. Each business object has only one Root 
Node. Nodes are defined via compositions in a tree, but nodes can also be related in an 
arbitrary structure via associations that can be separate from the tree structure. 

 
Business Object Representation nodes are placeholders for other business objects and the 
associations to these. They are only for visualization of the association to other business 
objects. 

 

Associations:  
An association is a direct, unidirectional, binary relationship between two business object 
nodes. 
 
Associations can be used to relate two nodes in a well-defined direction. The association can 
be used to navigate from one node (source node) to the related node (target node). The 
associated nodes can be nodes within one business object or in different business objects 
(cross business object association). 
 
Associations can have parameters to filter the result of the related nodes. They can only be 
defined between two nodes and in one defined direction. Moreover, they have a defined 
cardinality which gives information about the existence of an association and the number of 
associated nodes. 
 

Actions:  
An action is an element of a business object node that describes an operation performed on 
that node. 
 
An action can be used to allow the external triggering of business logic (in contrast to a 
determination). When the action is performed, you must specify the key for the instances on 
which it is to be performed (if it is not a static action) and any input parameters that the action 
requires. 
 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

16 

16 

An action can only be performed with the number of instances that is configured in the 
cardinality of the action. It is performed for all instances if an error in the action validation has 
not occurred. If errors occur, then the behavior depends on the action settings. 
 

Determinations:  
An element of a business object node that describes internal changing business logic on the 
business object. It can be used to trigger business logic based on internal changes (in 
contrast to an action). There are two types of determinations: Transient and Persistent. This 
categorization indicates whether a determination will alter persistent or only transient data. A 
determination is mostly used to compute data that can be derived from the values of other 
attributes. Examples: 
 

 Products (for example, item amount = quantity × list price) and ratios. 

 Totals of items (for example, invoice amount = Σ item amounts). 

 Statuses. 
 
The determined attribute and the determining attributes can belong to the same node 
(example 1) or to different nodes (example 2). There are also values that do not depend on 
any other value but still have to be determined automatically upon creation or modification of 
a node instance, for example, IDs, UUIDs, and GUIDs.  
 
For each determination, it is necessary to specify which changes (such as create, update, 
delete or load) on which nodes will trigger the determination at a specific time. A 
determination is called at different points in time (determination time), depending on the 
model. The following determination times exist: 
 

Execution Time Use Case 

After Loading Dependent fields that are not saved (redundant) have to be 
recalculated. 

Before Retrieve Before Retrieve Determining contents of transient nodes before their 
first retrieval. After the first retrieval of a node instance determinations 
for this determination-time are not executed, as changes to data during 
retrieval are not allowed. 

After Modify Recalculation of fields that depend on changed fields. This is especially 
useful for derived fields that are of interest to the “outside world” and 
need to be updated immediately. 

After Validation This point in time can be used to modify data based on the outcome of 
consistency validations in the Determination & Validation cycle. A typical 
use case is to perform some follow-up actions depending on whether 
there were error messages in the consistency validations. 

Before Save 
(Finalize) 

Determine data that must not be determined prior to saving or for data 
that is not visible to the “outside world” (so it’s determination can be 
postponed until saving for performance reasons). 

Before Save 
(Draw Numbers) 

Determine data that must not be determined unless the transaction 
succeeds but may be used by other Business Objects. A typical use 
case for such very late changes is drawing numbers to assure gapless 
numbering. 

During Save Determine data that must not be determined unless the transaction 
succeeds. Determinations for this determination-time will be executed at 
most once in a LUW. 

After Commit Determine data after a transaction was successfully committed. A typical 
use case for this determination-time is starting asynchronous processes. 

After Failed Save 
Attempt 
 

Do cleanups after a try to save a transaction was rejected during the 
Finalize or Check before Save stages. A determination is only triggered 
if request nodes are assigned to it and instances of these request nodes 
are changed. 

 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

17 

17 

Validations:  
A validation is an element of a business object node that describes some internal checking 
business logic on the business object. 
  
Validations can be used to check if an action is allowed. Action validations can be assigned to 
object-specific actions and to the framework actions create, update, delete and save. They 
can be used to check if an action can be carried out. An action validation is carried out when 
an action is called before it is performed. If some validations fail, the action is not performed 
for the instances where the validation failed. Depending on the action settings, the action is 
also not performed. 
 
A validation can be used to check the consistency of a business object. Consistency 
validations can be used to check the consistency of a business object. They can be assigned 
to the framework actions check of each node. Consistency validations are carried out when 
this action is called or automatically after a change is made if they are triggered via trigger 
nodes based on the changes. It is only triggered if some of the trigger nodes are assigned 
and instances of these trigger nodes are changed. 

 
Queries: 
Queries represent a defined set of attributes, such as search parameters, that return the 
queried IDs of the business object node instances. 
 
A query allows you to perform searches on a business object. They provide the initial point of 
access to business objects. Each query has an associated parameter structure. The result of 
the query is a set of all the record IDs in a business object that match the query criteria. 
 
  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

18 

18 

3.1.3 BOPF Modeling Tool 

The models of the TM business objects can be displayed with the BOPF Modeling Tool. It can 
be started via transaction /BOBF/CONF_UI. It allows browsing through the list of the business 
objects of the application. From here, you can navigate to the details of each business object 
to display its node structure and hierarchy, the configuration, the DDIC structures for each 
node, the node elements (e.g. Associations, Actions, Determinations, Validations and 
Queries), etc. Moreover, it allows navigating to the implementing ABAP classes of the 
business object. 
 

 
Picture: The Business Object Browser. 

 
On the initial screen (Picture 2) the user can browse through the available TM business 
objects as well as four other object categories which are used in the context of TM. These 
are: 
 

 Dependent Objects: 
Used in SAP TM for reusable parts of business objects that are not objects on their own, 
i.e. they only exist in the context of a business objects (the hosting object). Examples are 
address, attachment folder, text collection, and transportation charges. 
 

 Master Data Objects: 
Most master data BOs call the SCM Basis Master Data Layer (MDL) via an adapter in a 
read-only way. The content of these master data objects is maintained via the standard 
transactions in SCM Basis. The master data distribution between SAP ERP and SAP TM 
follows the standard SCM middleware architecture of the SCM Core Interface (CIF). 
Within SAP TM, access to master data occurs via master data BOs only. Examples are 
Location, Business Partner, Material, etc. 
 
 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

19 

19 

 Meta Data Objects: 
Examples are Freight Unit Building Rule, Planning and Selection Profiles, etc. which e.g. 
define data that is taken into consideration at runtime to define the required behavior of a 
business process (e.g. how shall Freight Units get built from the Forwarding Order data or 
which Freight Units shall be selected to be planned in the Transportation Cockpit of SAP 
TM). 

 

 
Picture: The Business Object Detail Browser - Node Structure. 

 
In the Business Object Detail Browser, you can navigate through the node hierarchy of the 
business object and display the node details. Besides other information, the node details 
show the data model of the node. 
 

 Combined Structure and Table Type:  
This DDIC structure includes the data structure of a node. In addition it includes a fixed 
BOPF DDIC structure which contains the node instance key (KEY), the key of the direct 
parent node instance (PARENT_KEY) as well as the key of the related business object 
instance (ROOT_KEY). The Combined Table Type has the Combined Structure as its line 
type. 
 

 Data Structure:  
This DDIC structure contains the attributes of the node, representing the node data. 
 

 Data Structure (tr.): 
Contains the transient attributes of a node, i.e. attributes which do not get persisted but 
are only filled and used during runtime. 
 

 
 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

20 

20 

 Extension Include & Extension Include (tr.):  
Important for field extensions on a node is the Extension Include. With this include, all 
extension fields are added (via Append Structures) which are to be persisted. Extension 
fields which are only relevant at runtime and not relevant to be persisted are placed in the 
corresponding transient Extension Include. 
 

 Database Table:  
Shows the database table where the persistent node information gets stored. 

 

 
Picture: The Business Object Detail Browser - Node Elements. 

 
When expanding the Node Elements, you can further navigate to a node and the elements 
assigned to it (e.g. Associations, Determinations, Validations, Actions and Queries as 
described in the previous sections). Moreover, the details for each of these elements can be 
displayed from here. For example, the details of an Action include a link to the implementing 
class of this Action and - if the Action has parameters - the corresponding parameter 
structure. 
 
The details of the node elements like Actions, Validations, Determinations, etc. are the 
starting point to identify places in the coding where a specific functionality of interest is 
implemented. Within the implementing classes of the node elements, of course further 
classes and their methods are used to realize its functionality. 
 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

21 

21 

3.2 BOPF Consumer Implementation Basics 
In this section, we give examples on how to implement BOPF consumers, i.e. how to use core 
services that allow creating, accessing and modifying business object instances. In section 
2.3 we take a look at how to implement BOPF entities such as actions, determinations and 
validations (this can be also done with the BOPF Enhancement Workbench which is 
described in section 3.3). 
 

3.2.1 Service Manager 

A business object can be accessed via a so-called Service Manager. The following coding 
shows how to get an instance of the service manager for e.g. the business object Forwarding 
Order: 
 
*&------------------------------------------------------------------* 

*& Report  ZREP_SRV_MGR 

*&------------------------------------------------------------------* 

*& How to get a service manager instance and use it to access BOPF 

*&------------------------------------------------------------------* 

REPORT  zrep_srv_mgr. 

 

DATA: lo_srv_mgr TYPE REF TO /bobf/if_tra_service_manager. 

 

* Get an instance of a service manager for e.g. BO TRQ 

lo_srv_mgr = /bobf/cl_tra_serv_mgr_factory=> 

             get_service_manager( /scmtms/if_trq_c=>sc_bo_key ). 

 
Besides others, the service manager provides the following methods that can be used to 
access the corresponding business object that it was instantiated for: 
 

Method Description 

QUERY Search, execute a BO query. 

RETRIEVE Read data for a given set of node instance keys. 

RETRIEVE_BY_ASSOCIATION Read data via association. 

DO_ACTION Execute a given action of a BO node. 

CONVERT_ALTERN_KEY Convert an alternative key to the technical key. 

MODIFY Create, change and delete BO node instances. 

 
The following coding examples and descriptions of the semantics of the corresponding 
method parameters illustrate the usage of the service manager methods to access BOPF 
business objects. We will add corresponding examples in a small demo report 
ZREP_BOPF_DEMO_1 step by step. 

3.2.2 Query 
The coding example shows how to call a BOPF query. To start a query, method QUERY of 
the service manager instance is used: 
 
*&------------------------------------------------------------------* 

*& Report  ZREP_BOPF_DEMO_1 

*&------------------------------------------------------------------* 

*& How to get a service manager instance and use it to access BOPF 

*&------------------------------------------------------------------* 

REPORT  zrep_bopf_demo_1. 

 

FIELD-SYMBOLS: <ls_root> TYPE /scmtms/s_trq_root_k, 

               <ls_item> TYPE /scmtms/s_trq_item_k, 

               <ls_link> TYPE /bobf/s_frw_key_link, 

               <ls_loc>  TYPE /scmtms/s_bo_loc_root_k, 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

22 

22 

               <ls_txc>  TYPE /bobf/s_txc_con_k, 

               <ls_msg>  TYPE /bobf/s_frw_message_k. 

 

DATA: lo_srv_trq           TYPE REF TO /bobf/if_tra_service_manager, 

      ls_selpar            TYPE /bobf/s_frw_query_selparam, 

      lt_selpar            TYPE /bobf/t_frw_query_selparam, 

      lo_message           TYPE REF TO /bobf/if_frw_message, 

      ls_query_inf         TYPE /bobf/s_frw_query_info, 

      lt_key               TYPE /bobf/t_frw_key, 

      lt_root              TYPE /scmtms/t_trq_root_k, 

      lt_failed_key        TYPE /bobf/t_frw_key, 

      lt_item              TYPE /scmtms/t_trq_item_k, 

      lt_link              TYPE /bobf/t_frw_key_link, 

      lt_item_key          TYPE /bobf/t_frw_key, 

      lt_target_key        TYPE /bobf/t_frw_key, 

      lt_loc_root          TYPE /scmtms/t_bo_loc_root_k, 

      lv_text_assoc_key    TYPE /bobf/conf_key, 

      lt_link_txctext      TYPE /bobf/t_frw_key_link, 

      lt_txc_text_key      TYPE /bobf/t_frw_key, 

      lv_text_node_key     TYPE /bobf/conf_key, 

      lv_content_node_key  TYPE /bobf/conf_key, 

      lv_content_assoc_key TYPE /bobf/conf_key, 

      lt_txc_content       TYPE /bobf/t_txc_con_k, 

      lo_change            TYPE REF TO /bobf/if_tra_change, 

      lr_action_param      TYPE REF TO /scmtms/s_trq_a_confirm, 

      lt_msg               TYPE /bobf/t_frw_message_k, 

      lv_str               TYPE string, 

      lo_msg               TYPE REF TO /bobf/cm_frw, 

      lt_trq_id            TYPE /scmtms/t_trq_id, 

      lt_trq_root_key      TYPE /bobf/t_frw_key. 

 

* Get an instance of a service manager for e.g. BO TRQ 

lo_srv_trq = /bobf/cl_tra_serv_mgr_factory=>get_service_manager( 

                /scmtms/if_trq_c=>sc_bo_key ). 

 

BREAK-POINT. 

 

* Set an example query parameter 

ls_selpar-attribute_name = /scmtms/if_trq_c=>sc_query_attribute-root-

query_by_attributes-created_by. 

ls_selpar-option         = 'EQ'. 

ls_selpar-sign           = 'I'. 

ls_selpar-low            = 'POLCH'. 

APPEND ls_selpar TO lt_selpar. 

 

BREAK-POINT. 

 

* Use method QUERY of the service manager to start the query 

lo_srv_trq->query( 

  EXPORTING 

    iv_query_key            = /scmtms/if_trq_c=>sc_query-root-                           

                              query_by_attributes 

    it_selection_parameters = lt_selpar 

  IMPORTING 

    eo_message              = lo_message 

    es_query_info           = ls_query_inf 

    et_key                  = lt_key ). 

 

BREAK-POINT. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

23 

23 

3.2.3 Retrieve 

The coding example shows how to retrieve the data for the Root node keys that were found 
by the query in 3.2.2. Method RETRIEVE of the service manager instance is used: 
 

… 
BREAK-POINT. 

 

* Use method RRETRIEVE to retrieve ROOT data 

lo_srv_trq->retrieve( 

  EXPORTING 

    iv_node_key             = /scmtms/if_trq_c=>sc_node-root 

    it_key                  = lt_key                                 

      iv_edit_mode            = /bobf/if_conf_c=>sc_edit_read_only   

      IMPORTING 

    eo_message              = lo_message                             

      et_data                 = lt_root                              

        et_failed_key           = lt_failed_key ). 

 

BREAK-POINT. 

 

3.2.4 Retrieve By Association (Standard) 
The coding example shows how to retrieve the data for the Item node keys that were found by 
the query in 3.2.2. Method RETRIEVE_BY_ASSOCIATION of the service manager instance 
is used with the composition association from Root to Item: 
 
… 
BREAK-POINT. 

 
* Use method Retrieve by Association to retrieve ITEM node data 

lo_srv_trq->retrieve_by_association( 

  EXPORTING 

    iv_node_key             = /scmtms/if_trq_c=>sc_node-root 

    it_key                  = lt_key                                 

      iv_association          = /scmtms/if_trq_c=>sc_association-

root- 

                              item 

    iv_fill_data            = abap_true                              

      iv_edit_mode            = /bobf/if_conf_c=>sc_edit_read_only   

      IMPORTING 

    eo_message              = lo_message                             

      et_data                 = lt_item                              

        et_key_link             = lt_link                            

          et_target_key           = lt_item_key                      

            et_failed_key           = lt_failed_key ). 

 

BREAK-POINT. 

3.2.5 Retrieve By Association (XBO) 

The coding example shows how to retrieve the data for the Locations stored in the items 
whose Item node keys were retrieved in 3.2.4. 
 
Again, method RETRIEVE_BY_ASSOCIATION of the service manager instance is used with 
the Cross BO association (XBO) from Item to Source Location Root that is defined on the 
item node of BO TRQ: 
 
 
 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

24 

24 

… 

REAK-POINT. 

 

* Following XBO Association ITEM -> Location 

lo_srv_trq->retrieve_by_association( 

  EXPORTING 

    iv_node_key             = /scmtms/if_trq_c=>sc_node-item 

    it_key                  = lt_item_key 

    iv_association          = /scmtms/if_trq_c=>sc_association-item- 

                              srcloc_root 

    iv_fill_data            = abap_true 

  IMPORTING 

    eo_message              = lo_message 

    et_data                 = lt_loc_root 

    et_key_link             = lt_link ). 

 

BREAK-POINT. 

 

3.2.6 Retrieve By Association (Dependent Objects) 
The coding example shows how to retrieve the data from the dependent object TextCollection 
assigned to the Root node of BO TRQ. Besides method RETRIEVE_BY_ASSOCIATION of 
the service manager instance, this requires calling helper method GET_DO_KEYS_4_RBA of 
class /SCMTMS/CL_COMMON_HELPER to map the TextCollection Meta Data node keys 
into TRQ runtime node keys: 
 
… 

BREAK-POINT. 

* Retrieve by Association (To Dependent Object Nodes) 

* Do RbA to ROOT TEXT Collection TEXT CONTENT node 

* Get Text Collection ROOT keys 

lo_srv_trq->retrieve_by_association( 

  EXPORTING 

    iv_node_key             = /scmtms/if_trq_c=>sc_node-root 

    it_key                  = lt_key 

    iv_association          = /scmtms/if_trq_c=>sc_association-root-     

textcollection          

  IMPORTING 

    eo_message              = lo_message 

    et_key_link             = lt_link 

    et_target_key           = lt_target_key ). 

 

* Map TXC Meta model node keys into TRQ runtime node keys 

* --> for all subnodes of DO ROOT we have to use this helper 

* method to get the correct runtime node keys of the DO nodes 

 

/scmtms/cl_common_helper=>get_do_keys_4_rba( 

  EXPORTING 

    iv_host_bo_key      = /scmtms/if_trq_c=>sc_bo_key 

    "Host BO DO Representation node (TRQ, node TEXTCOLLECTION) 

    iv_host_do_node_key = /scmtms/if_trq_c=>sc_node-textcollection 

"not needed here because source node of association is the DO ROOT  

"node for which we can use the TRQ constant 

*   iv_do_node_key      = DO Node 

    "DO Meta Model Association Key 

    iv_do_assoc_key     = /bobf/if_txc_c=>sc_association-root-text 

  IMPORTING 

    "DO Runtime Model Association Key 

    ev_assoc_key        = lv_text_assoc_key ).                       

    



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

25 

25 

 

lo_srv_trq->retrieve_by_association( 

  EXPORTING 

    iv_node_key             = /scmtms/if_trq_c=>sc_node- 

                              textcollection 

    it_key                  = lt_target_key 

    "DO runtime model association key 

    iv_association          = lv_text_assoc_key                      

      

  IMPORTING 

    eo_message              = lo_message 

    et_key_link             = lt_link_txctext 

    et_target_key           = lt_txc_text_key ). 

 
* Map TXC Meta model node keys into TRQ runtime node keys 

/scmtms/cl_common_helper=>get_do_keys_4_rba( 

  EXPORTING 

    iv_host_bo_key      = /scmtms/if_trq_c=>sc_bo_key                

      iv_host_do_node_key = /scmtms/if_trq_c=>sc_node-textcollection 

    "DO Meta Model Source Node Key 

    iv_do_node_key      = /bobf/if_txc_c=>sc_node-text 

  IMPORTING 

    "DO Runtime Model Node Key 

    ev_node_key         = lv_text_node_key ).                        

    

 

/scmtms/cl_common_helper=>get_do_keys_4_rba( 

  EXPORTING 

    iv_host_bo_key      = /scmtms/if_trq_c=>sc_bo_key                

      iv_host_do_node_key = /scmtms/if_trq_c=>sc_node-textcollection 

    "DO Meta Model Target Node key 

    iv_do_node_key      = /bobf/if_txc_c=>sc_node-text_content 

    "DO Meta Model Association Key 

    iv_do_assoc_key     = /bobf/if_txc_c=>sc_association-text- 

                          text_content 

  IMPORTING 

    "DO Runtime Model Node Key 

    ev_node_key         = lv_content_node_key                        

   

    "DO Runtime Model Association Key 

    ev_assoc_key        = lv_content_assoc_key ).                    

    

 

lo_srv_trq->retrieve_by_association( 

  EXPORTING 

    "DO runtime model source node key 

    iv_node_key             = lv_text_node_key                       

      it_key                  = lt_txc_text_key 

    "DO runtime model association key 

    iv_association          = lv_content_assoc_key                   

      iv_fill_data            = abap_true 

  IMPORTING 

    eo_message              = lo_messagect 

    et_data                 = lt_txc_content ). 

 

3.2.7 Do Action (Standard) 
The coding example shows how to start an action for a given set of TRQ instances 
represented by the corresponding Root node keys. The action CONFIRM of the TRQ Root 
node is called: 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

26 

26 

… 

BREAK-POINT. 

 

* Calling action CONFIRM of the TRQ Root node 

lo_srv_trq->do_action( 

  EXPORTING 

    iv_act_key           = /scmtms/if_trq_c=>sc_action-root-confirm 

    it_key               = lt_key 

*   is_parameters        = Action Parameters if available & required 

  IMPORTING 

    eo_change            = lo_change 

    eo_message           = lo_message 

    et_failed_key        = lt_failed_key ). 

 

BREAK-POINT. 

 

3.2.8 Do Action (Action Parameters) 
Again, the coding example shows how to start an action for a given set of TRQ instances 
represented by the corresponding Root node keys. In this example, the action CONFIRM of 
the TRQ Root node is called with some of the available action parameters: 
 
… 

BREAK-POINT. 

 

* fill the action parameters 

CREATE DATA lr_action_param. 

* Carry out check 

lr_action_param->no_check  = abap_true. 

lr_action_param->automatic = abap_false. 

 

* Calling action CONFIRM of the TRQ Root node with parameters 

lo_srv_trq->do_action( 

  EXPORTING 

    iv_act_key           = /scmtms/if_trq_c=>sc_action-root-confirm 

    it_key               = lt_key 

    is_parameters        = lr_action_param 

  IMPORTING 

    eo_change            = lo_change 

    eo_message           = lo_message 

    et_failed_key        = lt_failed_key ). 

 

BREAK-POINT. 

 

3.2.9 Convert Alternative Key 

The coding example shows how to convert a list of TRQ IDs into the corresponding Root 
node keys. Method CONVERT_ALTERN_KEY of the service manager instance is used: 
 
… 

BREAK-POINT. 

 

* Prepare a set of TRQ IDs 

CLEAR lt_trq_id. 

LOOP AT lt_root ASSIGNING <ls_root>. 

  APPEND <ls_root>-trq_id TO lt_trq_id. 

ENDLOOP. 

 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

27 

27 

* Convert IDs into BOPF keys 

lo_srv_trq->convert_altern_key( 

  EXPORTING 

    iv_node_key   = /scmtms/if_trq_c=>sc_node-root 

    iv_altkey_key = /scmtms/if_trq_c=>sc_alternative_key-root-trq_id 

    it_key        = lt_trq_id 

  IMPORTING 

    et_key        = lt_trq_root_key ). 

 

BREAK-POINT. 

 

3.2.10 Retrieve Property 
The following coding example shows how to retrieve Property information of node elements. 
In this specific example the Service Manager method RETRIEVE_PROPERTY is used to 
read the node attribute properties that are present at runtime. The concept of BOPF Node 
Element Properties is described in section 3.4.1 in more detail. 
 
CALL METHOD lo_srv_trq->retrieve_property 

  EXPORTING 

    iv_node_key                = /scmtms/if_trq_c=>sc_node-root 

    it_key                     = lt_trq_root_key 

    iv_node_attribute_property = abap_true 

    it_node_attribute          = lt_node_attribute 

  IMPORTING 

    eo_property                = lo_property 

    eo_message                 = lo_message. 

 

BREAK-POINT. 

 

3.2.11 Modify 
While the coding examples of the previous sub sections demonstrated how to access BOPF 
business objects, we now take a look at how to create, update and delete BO (node) 
instances. For these purposes, method MODIFY of the service manager is used. To 
demonstrate different possibilities of the method, we create a second demo report 
ZREP_BOPF_DEMO_2 and add corresponding examples step by step. 
 
*&------------------------------------------------------------------* 

*& Report  ZREP_BOPF_DEMO_2 

*& How to get a service manager instance and use it to access BOPF. 

*& How to create update and delete BO (node) instances 

*& How to use a transaction manager to save changes. 

*&------------------------------------------------------------------* 

REPORT  zrep_bopf_demo_2. 

 

FIELD-SYMBOLS: <ls_root>    TYPE /scmtms/s_trq_root_k, 

               <ls_trq_qdb> TYPE /scmtms/s_trq_q_result. 

 

DATA:   lo_srv_trq         TYPE REF TO /bobf/if_tra_service_manager, 

        lt_mod             TYPE /bobf/t_frw_modification, 

        ls_mod             TYPE /bobf/s_frw_modification, 

        lv_trq_new_key     TYPE /bobf/conf_key, 

        lo_chg             TYPE REF TO /bobf/if_tra_change, 

        lo_message         TYPE REF TO /bobf/if_frw_message, 

        lo_msg_all         TYPE REF TO /bobf/if_frw_message, 

        lo_tra             TYPE REF TO /bobf/if_tra_transaction_mgr, 

        lv_rejected        TYPE abap_bool, 

        lt_rej_bo_key      TYPE /bobf/t_frw_key2, 

        ls_selpar          TYPE /bobf/s_frw_query_selparam, 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

28 

28 

        lt_selpar          TYPE /bobf/t_frw_query_selparam, 

        lt_trq_qdb         TYPE /scmtms/t_trq_q_result. 

 

* Get instance of service manager for TRQ 

lo_srv_trq = /bobf/cl_tra_serv_mgr_factory=>get_service_manager( 

             /scmtms/if_trq_c=>sc_bo_key ). 

 
Create: As a first step, a new instance of business object TRQ (Forwarding Order) is created. 
First the modification table is set up to contain an entry for the creation (change mode is set to 
CREATE) of a new Root node instance. Then the data for the new Root node instance is 
assembled. Finally, the modification table is passed to method MODIFY of the service 
manager 
 
… 

BREAK-POINT. 

 

*--- Creating a new TRQ instance ---* 

ls_mod-node = /scmtms/if_trq_c=>sc_node-root. 

ls_mod-key  = /bobf/cl_frw_factory=>get_new_key( ). 

ls_mod-change_mode = /bobf/if_frw_c=>sc_modify_create. 

CREATE DATA ls_mod-data TYPE /scmtms/s_trq_root_k. 

 

ASSIGN ls_mod-data->* TO <ls_root>. 

<ls_root>-trq_type = 'ZENH'. 

APPEND ls_mod TO lt_mod. 

lv_trq_new_key = ls_mod-key. 

 

lo_srv_trq->modify( 

  EXPORTING 

    it_modification = lt_mod 

  IMPORTING 

    eo_change       = lo_chg 

    eo_message      = lo_message ). 

 
The next step shows how to instantiate a transaction manager which is used for persisting 
changes to the database. For this purpose, the SAVE method of the transaction manager is 
called. 
 
… 

BREAK-POINT. 

 

* Save transaction to get data persisted (NO COMMIT WORK!) 

lo_tra = /bobf/cl_tra_trans_mgr_factory=>get_transaction_manager( ). 

 

* Call the SAVE method of the transaction manager 

lo_tra->save( 

  IMPORTING 

    ev_rejected            = lv_rejected 

    eo_change              = lo_chg 

    eo_message             = lo_message 

    et_rejecting_bo_key    = lt_rej_bo_key ). 

 
Update: Now the newly created instance of the TRQ Root node is update with some 
additional data. The example code shows how to prepare the modification table for an update 
(the change mode will be set to UPDATE). Again, the modification table is then passed to 
method MODIFY of the service manager (and in this example the update is directly persisted 
by using the SAVE method of the transaction manager). 
  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

29 

29 

… 

BREAK-POINT. 

 

*--- Update the new instance with a Shipper ID ---* 

CLEAR lt_mod. 

ls_mod-node = /scmtms/if_trq_c=>sc_node-root. 

ls_mod-key  = lv_trq_new_key. 

ls_mod-change_mode = /bobf/if_frw_c=>sc_modify_update. 

CREATE DATA ls_mod-data TYPE /scmtms/s_trq_root_k. 

 

ASSIGN ls_mod-data->* TO <ls_root>. 

<ls_root>-shipper_id = 'B00_CAR002'. 

APPEND /scmtms/if_trq_c=>sc_node_attribute-root-shipper_id 

    TO ls_mod-changed_fields. 

APPEND ls_mod TO lt_mod. 

 

lo_srv_trq->modify( 

  EXPORTING 

    it_modification = lt_mod 

  IMPORTING 

    eo_change       = lo_chg 

    eo_message      = lo_message ). 

 

BREAK-POINT. 

 

lo_tra->save( 

  IMPORTING 

    ev_rejected            = lv_rejected 

    eo_change              = lo_chg 

    eo_message             = lo_message 

    et_rejecting_bo_key    = lt_rej_bo_key ). 

 
Delete: In the last step of the example report, we use a query to find TRQ instances that then 
will be deleted. Again, the modification table will be prepared for deleting a given TRQ 
instance (the change mode will be set to DELETE). Just like in the first steps, the modification 
table is then passed to method MODIFY of the service manager (and in this example the 
delete is directly persisted by using the SAVE method of the transaction manager). 
 

… 

BREAK-POINT. 

 

* set an example query parameter 

ls_selpar-attribute_name = /scmtms/if_trq_c=>sc_query_attribute-root-

query_by_attributes-trq_type. 

ls_selpar-option         = 'EQ'. 

ls_selpar-sign           = 'I'. 

ls_selpar-low            = 'ZENH'. 

APPEND ls_selpar TO lt_selpar. 

 

* find a TRQ instance to be deleted 

lo_srv_trq->query( 

  EXPORTING 

    iv_query_key            = /scmtms/if_trq_c=>sc_query-root-

qdb_query_by_attributes 

    it_selection_parameters = lt_selpar 

    iv_fill_data            = abap_true 

  IMPORTING 

    eo_message              = lo_message 

    et_data                 = lt_trq_qdb ). 

 

BREAK-POINT. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

30 

30 

* Delete 1st found instance 

READ TABLE lt_trq_qdb ASSIGNING <ls_trq_qdb> INDEX 1. 

CLEAR lt_mod. 

ls_mod-node = /scmtms/if_trq_c=>sc_node-root. 

ls_mod-key  = <ls_trq_qdb>-db_key. 

ls_mod-change_mode = /bobf/if_frw_c=>sc_modify_delete. 

APPEND ls_mod TO lt_mod. 

 

lo_srv_trq->modify( 

  EXPORTING 

    it_modification = lt_mod 

  IMPORTING 

    eo_change       = lo_chg 

    eo_message      = lo_message ). 

 

* Call the SAVE method of the transaction manager 

lo_tra->save( 

  IMPORTING 

    ev_rejected            = lv_rejected 

    eo_change              = lo_chg 

    eo_message             = lo_message 

    et_rejecting_bo_key    = lt_rej_bo_key ). 

 
Note: When deleting the Root node of a business object instance, the BOPF Framework 
makes sure that all corresponding sub nodes of the business object instance will be also 
deleted, i.e. the complete business object instance will be deleted. 
 

3.3 BOPF Enhancement Workbench 
In the following section, we focus on detailed step-by-step descriptions on how to create 
enhancements using the BOPF Enhancement Workbench. 
 

3.3.1 Overview 
Since TM 8.0, the BOPF Enhancement Workbench is available to enhance the standard TM 
BOBF Business Objects. It can be used to create, change or delete enhancements of the 
standard TM BOPF Business Objects. Such enhancements again can be enhanced with the 
same tool, i.e. nested enhancements are also possible. The BOPF Enhancement Workbench 
supports the following enhancements: 
 
Create, change or delete additional 

 Subnodes. 

 Actions and action enhancements. 

 Determinations. 

 Consistency and action validations. 

 Queries. 

 Customer/Partner-specific Business Objects New as per NW 7.31. 
 
The BOPF Enhancement Workbench now allows creating new customer/partner-specific 
Business Objects. Customers and partners can create their very own Business Objects that 
they can freely implement according to their requirements. Still Standard TM BOPF Business 
Objects must have been declared to be extensible by SAP Development. Only such Business 
Objects can be enhanced. The same applies to a Business Object’s entities like nodes, 
actions, etc. They can only be enhanced if SAP Development has declared them to be 
extensible. If customer/partner-specific Business Objects are not declared to be extensible, 
others like implementation partners or SAP development cannot enhance them, i.e. nested 
enhancements are not possible. If this is required, declare them as extensible too. 
 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

31 

31 

The BOPF Enhancement Workbench is started with transaction /BOBF/CUST_UI. 
  

 
Picture: BOBF Enhancement Workbench Initial Screen. 

 
On the initial screen, you can see the Business Objects of the Transportation Management 
Application that are allowed to be enhanced in general (see Business Objects in the picture 
above). Whenever you want to enhance one of the listed Standard Business Objects, the first 
step is to create a so-called Enhancement Object for this Business Object. For the 
Enhancement Object, the original Business Object represents the so called Super Business 
Object or base object. 
 
Important to know is that this Enhancement Object does neither replace nor represent a copy 
of the standard Business Object. Instead it serves as a container for all enhancements that 
you add to the Business Object via the Enhancement Workbench. At runtime, still the 
standard Business Object functionality is being executed with the enhancements in addition. 
 
A double click on one of the already existing Enhancement Objects will lead you to the 
corresponding details as shown in the following picture: 
 

 
Picture: Details of an Enhancement Object. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

32 

32 

The specific example here shows an Enhancement Object for the Freight Order BO (TOR). 
The sections marked in the picture above show different entities of the Enhancement Object 
(double click on the very first line in the Node Browser). 
 
The Node Browser section shows the node structure of the Enhancement Object which 
includes all nodes (i.e. the complete node hierarchy) of the super business object and all 
subnodes that might have been added to the business object via the Enhancement 
Workbench. All nodes which are not grayed out here are allowed to be enhanced. If a node is 
grayed out, it has been defined to be not extensible. This is especially the case for standard 
dependent objects like Address, Attachment Folder and Text Collection. On the other hand, 
dependent objects defined by Transportation Management itself can be enhanced, provided 
that development has enabled them correspondingly. 
 
The Entity Browser section shows all actions available at the Enhancement Object. This 
includes all standard actions as well as actions that might have been added to the business 
object via the Enhancement Workbench (All actions are only shown when you have marked 
the Enhancement Object in this view. If you double click on one of the nodes, the Entity 
Browser will only contain those actions which belong to this specific node). 
 
The details section on the right side shows the name of the Super Business Object 
associated with the selected Enhancement Object as well as the so called constants interface 
of the Enhancement Object. This interface will contain all constants which are generated for 
your enhancements. 
 
A double click on one of the nodes (e.g. the Root Node) will show the following picture with 
details related to this specific node. 
 

 
Picture: The node of an Enhancement Object with its details. 

 
The picture above shows the possible enhancement options for the selected node (here: the 
Root Node of the Freight Order BO) in the Node Browser. Click the right mouse button to view 
the types of enhancements that can be created for the selected node. 
 
In the Entity Browser, the available actions of the selected node are shown. You can select 
one of the listed actions and then click the right mouse button to see the types of 
enhancements that can be created for the selected action. 
 
Moreover, in the details section, the node details (i.e. the data model) of the selected node is 
displayed, similar to those already mentioned in section 3.1.3 on the BOBF Modeling Tool. 
Here in the BOBF Enhancement Workbench you can see: 
 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

33 

33 

 Persistent Structure: 
This DDIC structure contains the attributes of the node, representing the node data. 
 

 Transient Structure: 
Contains the transient attributes of a node, i.e. attributes which do not get persisted but 
are only filled and used during runtime. 
 

 Combined Structure & Combined Table Type:  
This DDIC structure (table type) includes the data structure of a node. In addition it 
includes a fixed BOPF DDIC structure which contains the node instance key (KEY), the 
key of the direct parent node instance (PARENT_KEY) as well as the key of the related 
business object instance (ROOT_KEY). 
 

 Database Table: 
Shows the database table where the persistent node information gets stored. 
 

 Extension Includes (persistent & transient):  
Important for field extensions on a node is the Extension Include. With this include, all 
extension fields are added (via Append Structures) which are to be persisted. Extension 
fields which are only relevant at runtime and not relevant to be persisted are placed in the 
corresponding transient Extension Include. 

 
By double click on the corresponding structures, tables or table types you can navigate to the 
details of these DDIC objects. Especially the Extension Includes are most important for field 
extensions. Here you add the customer / partner specific persistent and transient fields in 
corresponding append structures. 
 
The procedure how to do this and how to create all other indicated enhancement options via 
the BOPF Enhancement Workbench will be described more detailed in the following sections. 
 

3.3.2 First step: Creating an Enhancement Object 
The first step to enhance a standard Transportation Management Business Object is to create 
a so called Enhancement Object for this Business Object. The Business Object associated 
with this Enhancement Object is also called the Super Business Object of an Enhancement 
Object. 
 
It is important to know that this Enhancement Object does neither replace nor represent a 
copy of the standard Business Object. Instead it serves as a container for all enhancements 
that you add to the Business Object via the Enhancement Workbench. At runtime, still the 
standard Business Object functionality is being executed with the enhancements in addition. 
Moreover all coding corrections, adjustments of the BO Meta Model, etc. provided for the 
standard Business Objects and its entities will of course be present at any time. 
 
1) Start the BOPF Enhancement Workbench (transaction /BOBF/CUST_UI) and select the 

Business Object to be enhanced. Let’s assume we create an Enhancement Object for the 
Freight Order BO (its technical name is /SCMTMS/TOR). 
 

2) Click the right mouse button on the selected BO and select the option Create 
Enhancement in the upcoming popup menu. 

 
3) A wizard will now guide you through the next steps for creating the Enhancement Object. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

34 

34 

 
Picture: Creating an Enhancement Object. 

 
4) On the first wizard screen click on button Continue. 

 
5) On the next wizard screen you can see the name of the Super BO and the following list of 

fields ready for input: 
 

 Enhancement Name: The name of your enhancement. 
Example: ENH_TOR 
 

 Description: A description of your enhancement. 
Example: Enhancement Object for TOR BO 
 

 Namespace: The namespace that your enhancement shall be associated with. It will 
be added at the beginning of the final technical name for your Enhancement Object. 
Example: Z (i.e. in this case the Customer Namespace). 
 

 Prefix: A prefix that will be added between the Namespace and the Enhancement 
Name in the final technical name of your enhancement. It is not a mandatory field and 
can be left empty if not required. In the following examples we will keep it just empty. 

 
6) Click on button Continue. With the entries made before, the next wizard step will propose 

the name of your enhancement as well as the name of the constants interface that will be 
created for the new Enhancement Object. Example (with the given entries): 
 
Technical Name  : ZENH_TOR 
Constants Interface : ZIF_ENH_TOR_C 
 
On this screen you can also manually adjust the two fields. 
 

7) Click on button Continue to get to the next wizard step. Here you define (yes/no) whether 
you allow your enhancement to be enhanced in further enhancements (i.e. nested 
enhancements are possible). 
 

8) At any step of the wizard you can go back to all preceding steps again by clicking Back 
button. With this, adjusting the entered data is of course possible until you have 
completed the wizard. Click on button Complete to finally create your Enhancement 
Object with the entered specification. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

35 

35 

The new Enhancement Object can now be used to create enhancements of the 
corresponding Super Business Object. The creation of the different types of enhancements 
on node and action level is described in the following sections. 
 

3.3.3 General remarks on creating enhancements 

Some general remarks that are valid for creating enhancements via the wizards provided by 
the BOPF Enhancement Workbench: 
 

 Implementing Classes: Some types of enhancements require providing an implementing 
class. This class contains the business logic of the enhancement. In the wizards you 
define a class name and the system creates it automatically with the right interface 
assigned for the corresponding entity to be created after finishing the wizard. You must 
implement it of course manually. 
 
The implementing class name should meet naming conventions. The wizard 
automatically suggests a class name that corresponds to the BOPF naming conventions. 
You can also provide already existing classes as implementing classes. They need to 
implement the corresponding BOPF Interface (e.g. /BOBF/IF_FRW_ACTION for actions 
or /BOBF/IF_FRW_VALIDATION for validations, etc.). The system does not overwrite the 
implementing class if it already exists when finalizing the wizard. 
 

 The enhancement name should start with the namespace or prefix of the open 
enhancement (in our example this would be “ZENH_”). This ensures there is a clear 
separation between the entities of different enhancements (e.g. in case two or more 
different implementation partners want to separate their enhancements). The system 
automatically enters the value in the field for the enhancement name. You should add a 
meaningful enhancement name. 

 

 When completing the wizard, further required objects will be generated automatically. The 
system adds the new enhancement to the enhancement object. It displays the new 
enhancement in the Entity Browser when you select the corresponding assigned node or 
action. As mentioned, in case an implementing class is required for the enhancement, it is 
generated and must be implemented manually afterwards. The constants interface of the 
enhancement object is regenerated and contains a unique constant identifying the new 
enhancement. In the enhancement constants interface you will only find constants for 
your enhancements. The constants for standard entities are located in the standard BO 
constants interface. 

 

 Every enhancement created with the BOPF Enhancement Workbench can also be 
deleted again.  For each create wizard a corresponding delete wizard is available which 
guides you through the relevant step and also checks the preconditions to be fulfilled for a 
deletion. 

 

 Note that each Enhancement Object has its own Constants Interface. As you can see in 
the coding examples of section 3.2 the Node Elements of a BO are referred to via the 
BO’s standard Constants Interface. Enhancement Node elements are not added to the 
standard Constants Interface but to the corresponding Enhancement Object Constants 
Interface. The latter one must be used to reference your Enhancement Node Elements in 
your coding. 

 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

36 

36 

3.3.4 Creating Field Extensions 

Customers and Partners may require additional fields to be stored with the business objects, 
get them entered and displayed on the User Interface or get them transferred between 
external systems (e.g. ERP) and Transportation Management via corresponding services. 
 
Creating field extensions on the Business Objects delivered with Transportation Management 
is the basis for these kinds of enhancements. Such field extensions can be created using the 
BOPF Enhancement Workbench. 
 
1) Start the BOPF Enhancement Workbench (/BOBF/CUST_UI) and select the 

Enhancement Object for the Business to be enhanced with additional fields. Let’s assume 
we create a field extension for the Freight Order BO (Enhancement Object ZENH_TOR 
created in section 3.3.2). 
 

2) Double click on the node that shall be enhanced by additional fields (in our example the 
Root Node of the Freight Order BO). In the details of the node in the right area you can 
see the Extension Includes that will carry the additional fields. Field Extensions are 
always assigned to such an Extension Include. 
 

 Double click on the Persistent Extension Include to start adding fields that are to be 
persisted on the database. 
 

 Double click on the Transient Extension Include to start adding fields that are 
intended to be only used during runtime and do not get persisted on the database. 
 

 
Picture: The Extension Includes of a BO node. 

 
3) On the following screen you can see the DDIC Editor (analog to transaction SE11 for 

DDIC objects). Here click on the menu button Append Structure… to create a new 
Append for the chosen Extension Include. 
 
This append will contain your extension fields. Usually, you just need one such append to 
place all your extension fields. But it is also possible to create additional Appends for the 
Extension Include e.g. to separate extensions from different partners. 
 
Example append: ZENH_DEMO_TOR_ROOT 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

37 

37 

 
Picture: Creating an Append for the Extension Include. 

 
4) Enter a short description for the Append and add the extension fields to be included in 

this Append (Component, Typing Method and Component Type). After the extension 
fields are correctly specified, save and activate the Append. 
 

 
Picture: Specifying the extension fields in the new Append. 

 
With the described four steps, the new extension fields are now part of the corresponding 
Node Structures, Table Types and the Database Table (provided that you have added the 
extension fields in the Persistent Extension Include). Both, transient and persistent extension 
fields are now ready to be used within further enhancements, e.g. in the business logic, the 
User Interface or in the context of services that send or receive corresponding information. 
 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

38 

38 

3.3.5 Creating Subnodes 

The Enhancement Workbench allows extending a business object with additional nodes. 
Subnodes can be added via a corresponding wizard that guides you through the required 
steps. 
 
1) Open the corresponding Enhancement Object and select the node that shall be extended 

with a new subnode. In the context menu of the node (click right mouse button) choose 
Create Subnode to start the wizard. Example: 

 
Root Node of the Freight Order BO in the example Enhancement Object ZENH_TOR. 
 

2) The first step in the wizard is to specify the name for the new subnode and a description 
on the semantic and purpose of the new subnode. Example: 
 
Node Name  : ZENH_ROOT_SUBNODE 
Description  : Demo Enh. TOR Root Subnode 
 
Note: The name of the subnode must be unique in the business object and should start 
with the namespace of the used enhancement object. If no namespace has been entered, 
the node name must start with the prefix of the used enhancement (in our example this 
would be “ZENH_”). This ensures that you have a clear separation between the nodes of 
different enhancements that belong to the same business object. The namespace (or 
prefix) value is automatically inserted in this field and must be completed with a 
meaningful node name. 

 
3) In the second step you need to define whether this new subnode is itself extensible. Set 

the flag Node is extensible if you want to add additional enhancements to the new 
subnode (i.e. further subnodes, actions, determinations, etc.). If the flag is set, you can 
specify the names of a Persistent Extension Include and a Transient Extension Include to 
allow field extensions for the new subnode.  
 
(1) Enter the names of these includes. Example: 

 
Persistent Extension Include : ZENH_INCL_P_TORSUBNODE 
Transient Extension Include : ZENH_INCL_T_TORSUBNODE 
 

(2) On the wizard screen double click on these structures to right away start creating the 
corresponding DDIC objects. You will be guided to the DDIC Editor where you can 
define the initial information for the Extension includes. Repeat the following steps for 
both Extension Includes: 
 

(3) Under menu path Extras → Enhancement Category choose enhancement category 
“Can be enhanced (character-like or numeric)”. 
 

(4) Provide a short description. 
 

(5) Create a dummy component (required for technical reasons). Example for the 
Persistent Extension Include: 
 

Component Typing Method Component Type 

ZENH_P_DUMMY Types DUMMY 

 
Do the same for the Transient Extension Include (if you have defined one). Example 
for the Transient Extension Include: 
 

Component Typing Method Component Type 

ZENH_T_DUMMY Types DUMMY 

 
(6) Save and activate the corresponding Extension Include. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

39 

39 

 
Picture: Example Enhancement Extension Include with dummy component. 

 
4) The third step is to define and create the Persistent Structure and/or the Transient 

Structure for the subnode. 
 
(1) Enter the names for these structures. Example: 

 
Persistent Structure : ZENH_S_ROOT_SUBNODE_D 
Transient Structure : ZENH_S_ROOT_SUBNODE_DT 
 

(2) On the wizard screen double click on these structures to right away start creating the 
corresponding DDIC objects. You will be guided to the DDIC Editor where you can 
define the initial information for these structures. 
 

(3) Under menu path Extras → Enhancement Category choose enhancement category 
“Can be enhanced (character-like or numeric)”. 
 

(4) Provide a short description. 
 

(5) In the Persistent Structure define the attributes that shall be part of the new subnode 
and get persisted on the database. 

 
(6) At the end of the Persistent Structure include the Persistent Extension Include from 

step 3 to allow persistent field extensions for the new subnode. 
 

(7) In the Transient Structure define the attributes that shall be part of the new subnode 
and will only be available at runtime (their content is created via Determinations at 
runtime). 

 
(8) At the end of the Transient Structure include the Transient Extension Include from 

step 3 to allow transient field extensions for the new subnode. 
 

(9) Save and activate the corresponding Extension Include. 
 

 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

40 

40 

 
Picture: Example Persistent Structure. 

 
5) In step four, the database types are defined. For this, the name of the Combined 

Structure, the Combined Table Type as well as the Database Table name is entered. 
Example: 
 
Combined Structure  : ZENH_S_ROOT_SUBNODE 
Combined Table Type : ZENH_T_ROOT_SUBNODE 
Database Table Name : ZENH_D_ROOT_SUBN 
 
The content of these three DDIC objects will be automatically generated by the system. 
The combined structure will contain the attributes of the persistent and transient structure 
from step 4 as well as BOBF-specific key attributes. Moreover, the combined structure 
will contain the Extension Includes with corresponding extension fields (if available). The 
combined table type and the database table will have the same structure like the 
combined structure. 
 

 
Picture: The final combined structure of the new subnode. 

 
6) Click on button Complete to finalize the creation of the new subnode. With this step, 

further required objects for the subnode will be generated automatically. Afterwards, the 
subnode can be used like any other node of the enhanced business object. If you have 
declared it to be extensible, any enhancements for the new node are done the same way 
like for the standard nodes, i.e. you can add fields via field extensions, add actions, etc. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

41 

41 

On completion of the subnode, also the constants interface of the enhancement is 
regenerated and contains a unique constant identifying the subnode (this constant is 
required for accessing the data of the node correctly). 
 

 
Picture: The final new sub node. 

 

3.3.6 Creating Actions 

You can use an action to allow the explicit external triggering of business logic. Actions can 
be added to extensible standard nodes and new subnodes. The wizard for this task guides 
you through the following required steps. 
 
1) Open the corresponding Enhancement Object and select the node that shall be extended 

with a new action. In the context menu of the node (click right mouse button) choose 
Create Action to start the wizard. Example: 

 
Root Node of the Freight Order BO in the example Enhancement Object ZENH_TOR. 

 
2) The first step in the wizard is to specify the name for the new action and a description on 

the semantic and purpose of the new name. Example: 
 
Action Name : ZENH_ROOT_DEMO_ACTION 
Description  : Demo Enh. Action on TOR Root 

 
3) In the second step you need to define the following information on the new action. 

  
(1) Implementing Class for example: ZCL_ENH_A_ROOT_DEMO_ACTION. 

 
The implementing class must implement interface /BOBF/IF_FRW_ACTION. 
 

(2) Action Cardinality: Defines how many node instances the action can operate on 
during one action call. The following are the action cardinality types: 
 

 Multiple Node Instances: Select if the action always operates on one or more 
node instances. 
 

 Single Node Instance: Select if the action operates on exactly one single node 
instance for each call. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

42 

42 

 Static Action (No Node Instances): Select if the action does not operate on any 
node instances. 

 
(3) Parameter Structure: Some actions need an additional importing parameter. Enter a 

name for the parameter structure and then start creating the structure by double-
clicking the name. You actually get navigated to transaction SE11 where you can 
simply define a DDIC structure (even a deep one) that represents the different 
required parameters for your action. 

 
4) On the next wizard screen you can specify whether the new action shall be extensible or 

not. Set the flag Action can be enhanced if you want to allow adding enhancements to the 
new action (i.e. adding Pre- and Post-Action Enhancements and Action Validations). 
  

5) Click on button Complete to finalize the creation of the new action. 
 

 
Picture: The final new Action assigned to the respective node. 

 
6) Finally, you need to implement your business logic in the Action’s implementing class that 

you have specified in the previous steps. Double click on the implementing class in the 
action details to start the implementation. 
 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

43 

43 

 
Picture: Implementing the business logic of the new Action. 

 

3.3.7 Creating Action Validations 
An action validation is referred to a certain action. It contains checking logic which is 
automatically executed before the action is processed. It can be used to check if an action 
can be carried out. An action validation is carried out when an action is called, and before it is 
performed. If some validations fail, the action is not performed for the instances where the 
validation failed. 
 
The BOBF Enhancement Workbench provides a corresponding wizard to create new action 
validations for extensible standard actions and enhancement actions. 
 
1) Open the corresponding Enhancement Object and navigate to the Action that shall be 

extended with a new Action Validation. In the context menu of the Action (click right 
mouse button) choose Create Action Validation to start the wizard. Example: 
 

 
Picture: Context Menu of an Enhancement Action. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

44 

44 

Example: Action ZENH_ROOT_DEMO_ACTION created in section 3.3.6 (Root Node of 
the Freight Order BO in the example Enhancement Object ZENH_TOR). 

 
2) The first step in the wizard is to specify the name for the new action validation and a 

description on the semantic and purpose of this new entity. Example: 
 
Validation Name : ZENH_ROOT_DEMO_ACTVAL 
Description   : Demo Enh. Action Validation 

 
3) In the second step you need to define the implementing class of the new action 

validation. Example: ZCL_ENH_V_ROOT_DEMO_ACTVAL. 
 
The implementing class must implement interface /BOBF/IF_FRW_VALIDATION. 
 

4) Click on button Complete to finalize the creation of the new action validation. 
 

5) Finally, you need to implement your business logic in the action validation’s implementing 
class that you have specified in the previous steps. Double click on the implementing 
class in the action validation details to start the implementation. 

 

 
Picture: The final new Action Validation assigned to the corresponding action. 

 

3.3.8 Creating Pre- and Post-Action Enhancements 
A pre- or post-action enhancement can be used to extend the functionality of a certain action 
that is located in the base object (i.e. they are created for extensible standard actions only). 
 

 A pre action enhancement is automatically executed by the BOPF framework, before a 
certain action of the base object is performed. 
 

 A post action enhancement is automatically executed by the BOPF framework after a 
certain action of the base business object was performed. 

 
If an importing parameter structure is maintained on the base action, this parameter is also 
handed over to the pre or post action enhancement and can be used in the implementation of 
the corresponding business logic. The BOPF Enhancement Workbench provides 
corresponding wizards for creating pre and post action enhancements. As an example, we 
describe the creation of a pre action enhancement (the procedure works analog for post 
action enhancements). 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

45 

45 

1) Open the corresponding Enhancement Object and navigate to the standard Action that 
shall be extended with a new Pre-Action Enhancement. In the context menu of the Action 
(click right mouse button) choose Create Pre-Action Enhancement to start the wizard. 
 

 
Picture: Context menu of a Standard Action. 

 
Example: Action ASSIGN_TSP assigned to the Freight Order BO Root Node (in the 
example Enhancement Object ZENH_TOR). 

 
2) The first step in the wizard is to specify the name for the new Pre-Action enhancement 

and a description on the semantic and purpose of this new entity. Example: 
 
Action Name : ZENH_PRE_ASSIGN_TSP 
Description  : Demo Pre-Action Enhancement 

 
3) In the second step you need to define the implementing class of the new action 

validation. Example: ZCL_ENH_A_PRE_ASSIGN_TSP. 
 
The implementing class must implement the interface /BOBF/IF_FRW_ACTION. 
 

4) Click on button Complete to finalize the creation of the new Pre-Action enhancement. 
 

 
Picture: The final new Pre-Action enhancement assigned to the respective action. 

 
5) Finally, you need to implement your business logic in the consistency validation’s 

implementing class that you have specified in the previous steps. Double click on the 
implementing class in the Pre-Action Enhancement details to start the implementation. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

46 

46 

3.3.9 Creating Consistency Validations 

Consistency validations can be used to check the consistency of a business object. It is 
possible to check whether or not a certain set of node instances of a certain node are 
consistent. The consistency validation implementation returns a set of failed keys identifying 
all handed over node instances that are inconsistent. 
 
New enhancement consistency validations can be added to extensible standard nodes and 
new subnodes. The wizard for this task guides you through the following required steps. 
 
1) Open the corresponding Enhancement Object and select the node that shall be extended 

with a new consistency validation. In the context menu of the node (click right mouse 
button) choose Create Consistency Validation to start the wizard. Example: 

 
The new subnode ZENH_ROOT_SUBNODE of the Freight Order BO in the example 
Enhancement Object ZENH_TOR created in section 3.3.5. 
 

2) The first step in the wizard is specifying the name for the new consistency validation and 
a description on the semantic and purpose of this new entity. Example: 
 
Validation Name : ZENH_DEMO_CONSVAL_BS 
Description   : Demo Enh. Cons. Validation Before Save 

 
3) In the second step you need to define the implementing class of the new consistency 

validation. Example: ZCL_ENH_V_DEMO_VAL_BS). 
 
The implementing class must implement interface /BOBF/IF_FRW_VALIDATION. 

 
4) Maintain Request Nodes: A consistency validation is automatically executed as soon as 

one of the triggering conditions of its request nodes is fulfilled. In this wizard step, the 
request nodes and the corresponding triggering condition are defined. 

 
On this screen, all nodes are shown that are connected to the assigned node by an 
association. To maintain a request node, select the request node checkbox and the 
appropriate triggering condition (Create, Update or Delete). Example: 
 

Request 
Node 

Node Create Update Delete 

Yes ZENH_ROOT_SUBNODE Yes Yes No 

No ROOT No No No 

 
With these settings, the consistency validation will be triggered when instances of node 
ZENH_ROOT_SUBNODE are created or updated. Assume we declared node ROOT as 
a request node and marked the triggering condition Update. In this case, the consistency 
validation would also be triggered when the Root node is updated. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

47 

47 

 
Picture: Request Nodes and Triggering Conditions. 

 

5) Maintain the Impact: The consistency validation shall indicate changed node 
instances that are inconsistent by the help of messages. You can prevent the 
system from saving the entire transaction if a changed instance fails the 
consistency validation, or fails to set a consistency status. You can maintain the 
type of reaction on inconsistent node instances as validation impacts in this wizard 

screen. Options: 
 

 Return messages: This represents the default behavior of consistency validation. 
The validation implementation returns messages for inconsistent instances to the 
consumer. 
 

 Return messages and prevent saving: Select this option for the validation impact if 
the inconsistency of a node instance must be solved before saving the transaction. 

 

 Return messages and set a consistency status: If the base object (super object) 
contains a consistency status, this status can be influenced by a consistency 
validation. Choose the appropriate status variable. When a changed instance fails the 
consistency validation, this status is automatically set to inconsistent. 

 
6) Click on button Complete to finalize the creation of the new consistency validation. 

 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

48 

48 

Picture: The final new consistency validation assigned to the respective node. 
 
 
7) Finally, you need to implement your business logic in the consistency validation’s 

implementing class that you have specified in the previous steps. Double click on the 
implementing class in the consistency validation details to start the implementation. 

 
Note: Validations are always executed after Determinations (see also next section), i.e. first 
the Determinations compute new data or derive it from existing data. After execution of the 
Determinations the then current data is checked for consistency by Validations. 

3.3.10 Creating Determinations 

A determination is mainly used to compute data that can be derived from the values of other 
attributes. The determined attributes and the determining attributes of the triggering condition 
can belong to the same node or to different nodes. There are also values that do not depend 
on any other value but still have to be determined automatically on the creation or 
modification of a node instance, for example IDs. 
 
A determination is assigned to a business object node. It describes internal changing 
business logic on the business object. A determination is automatically executed by the BOPF 
as soon as the BOPF triggering condition is fulfilled. This triggering condition is checked by 
the framework at different points in the transaction, depending on the pattern of the 
determination. For each determination, it is necessary to specify the changes that build the 
triggering condition. Changes can include creating, updating, deleting, or loading node 
instances. 
 
As soon as the framework checks the trigger conditions of determinations and there is more 
than one determination to be executed, the dependencies of the determinations are 
considered. With the help of a determination dependency, a determination can be maintained 
either as a predecessor or a successor of another determination. 
 
The four supported determination patterns (in the following referenced with A, B, C and D) 
are: 
 
A) Derive dependent data immediately after modification (After Modify):  

The trigger condition of the determination is evaluated at the end of each modification. A 
modification roundtrip is defined as one single modification core service call from the 
consumer to the framework. The call contains arbitrary creations, updates, or deletions of 
node instances. Additionally, the trigger condition is checked after each action core 
service execution. 
 
The pattern shall be used if creating, updating, or deleting of node instances leads to 
unforeseen errors. These errors are handled during the same roundtrip. If there is no 
need to react immediately on the modification, and the handling of the side effect is very 
time consuming, we recommend you use the Derive dependent data before saving 
determination pattern instead. 
 
Example: As soon as a new ITEM node instance of the Freight Order business object is 
added, the changed total quantity on the Root Node (header level) must be immediately 
recalculated in order to show the new quantity on the consumer’s user interface. 
 

B) Derive dependent data before saving (Before Save): 
The trigger condition is checked as soon as the consumer saves the whole transaction. If 
the save of the transaction fails, these determinations could run multiple times. 
 
In contrast to the “Derive dependent data immediately after modification” pattern, the 
framework evaluates all changes done so far in the current transaction to check the 
trigger condition. Because this evaluation only takes place at the save phase of the 
transaction, this pattern is recommended for time consuming determinations. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

49 

49 

Example: The data of each invoice must additionally be stored in a XML file. A 
determination is configured to extract the XML code from each changed invoice. Because 
this is very time consuming the determination does not run immediately after each 
change of an invoice. Instead, it runs once before saving for all invoices changed during 
the current transaction. 

 
C) Fill transient attributes of persistent nodes (After Loading): 

The determination is automatically executed before the consumer accesses a transient 
node attribute of the assigned node for the first time. This allows you to initially derive the 
values of the attribute. In addition, these determinations are executed after each 
modification of a node instance. This allows you to recalculate the transient field if its 
derivation source attribute has been changed by the modification. 
 
These determinations are used to derive the values of transient attributes of a node. 
 
Example: The volume of a certain item of a Freight Order can be derived out of the 
length, width, and height of this item unit, and the quantity. The volume attribute is a 
transient attribute of the item node, and its value can be derived as soon as an item is 
loaded from the database. Therefore, you can use a determination that calculates and fills 
the volume at this point in time. 

 
D) Derive instances of transient nodes (Before Retrieve): 

The determination is executed before the consumer accesses the assigned transient 
node of the determination and allows the creation, update or deletion of transient node 
instances. 

 
These determinations are used to create and update instances of transient nodes. 
Because the determinations are executed before each access to their assigned transient 
node, they must ensure that the requested instances are in a consistent state. 
 
Example: The Forwarding Settlement business object does not store payment options. A 
payment option node is added as transient node buffering detailed information that is 
located in another system. 

 
E) Create Properties: 

The determination is used to create dynamic properties of business object node instances 
at runtime. It overrides the static properties of BO node instances provided that the 
default properties of the node defined at design time are not defined as final. 
 
Example: For a Forwarding Order a Forwarding Settlement Document is created via an 
Action. A status attribute is set on the Root Node of the Forwarding Order indicating that 
Settlement has taken place already for the Forwarding Order. Consequently, the 
determination sets the UPDATE_ENABLED attribute of the ITEM node from True to False 
indicating that the node cannot be updated anymore. 

 
New enhancement determinations can be added to extensible standard nodes and new 
subnodes. The wizard for this task guides you through the following required steps. 
 
1) Open the corresponding Enhancement Object and select the node that shall be extended 

with a new determination. In the context menu of the node (click right mouse button) 
choose Create Determination to start the wizard. Example: 

 
The new subnode ZENH_ROOT_SUBNODE of the Freight Order BO in the example 
Enhancement Object ZENH_TOR created in section 3.3.5. 
 

2) The first step in the wizard is to specify the name for the new determination and a 
description on the semantic and purpose of this new entity. Example: 
 
Determination Name : ZENH_DEMO_DET_AM 
Description    : Demo Enh. Determination After Modify 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

50 

50 

 
3) In the second step you need to define the implementing class of the new determination. 

Example: ZCL_ENH_D_DEMO_DET_AM. 
 
The implementing class must implement interface /BOBF/IF_FRW_DETERMINATION. 

 
4) Maintain the determination pattern: In this step you can choose one of the determination 

patterns described before via a radio button. 
 

5) Maintain Request Nodes: This is only required and done for determination patterns A and 
B). A determination is automatically executed as soon as one of the triggering conditions 
of its request nodes is fulfilled. In this wizard step, the request nodes and the 
corresponding triggering condition are defined. 

 
On this screen, all nodes are shown that are connected to the assigned node by an 
association. To maintain a request node, select the request node checkbox and the 
appropriate triggering condition (Create, Update or Delete). Example: 
 

Request 
Node 

Node Create Update Delet
e 

Yes ZENH_ROOT_SUBNODE Yes Yes No 

No ROOT No No No 

 
With these settings, the determination will be triggered when instances of node 
ZENH_SUBNODE are created or updated. Assume we declared node ROOT as a 
request node and marked the triggering condition Update. In this case, the determination 
would also be triggered when the Root node is updated. 

 

 
Picture: Request Nodes and Triggering Conditions. 

 
6) Maintain Transient Node: This is only required and done for determination pattern D. 

Select the transient node whose instances shall be modified by the determination. 
  

7) Maintain Write Nodes: Select all the nodes whose instances are created or modified by 
the determination. The write nodes ensure that the related BO nodes get locked for 
writing before the determination is executed. Example: 
 

Write Node Node 

Yes ZENH_SUBNODE 

No ROOT 

 

 
Picture: Write Nodes for a Determination 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

51 

51 

 
8) Maintain Determination Dependencies:  

As mentioned before, enhancement determinations are only executed after all standard 
determinations have been executed to ensure that the standard business logic is not 
disrupted and leads to inconsistencies. Nevertheless, you can define dependencies 
between enhancement determinations with the same determination pattern (this can only 
be the case for pattern A and B), i.e. this step will only come up in the wizard in case 
there is more than one determination of the same pattern present. 
 
On the wizard screen select the determinations which must be processed before or after 
the determination currently being created or configured. The triggering condition of the 
determination must also be fulfilled to get executed. 
 
For each determination you can define if it is either executed before (predecessor) or 
after the current determination (successor). This allows defining an execution sequence 
of the enhancement determinations. 
 

 
Picture: Defining the execution sequence of a determination. 

  
  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

52 

52 

In the picture above determination ZENH_DEMO_DET_AM gets assigned determination 
ZENH_DEMO_DEP_DET_AM as a predecessor determination. This second 
determination follows the same determination pattern (AM = After Modify; otherwise it 
would not be listed as an option for an Execution Sequence definition in this example). 
Moreover the BOPF framework will then automatically define determination 
ZENH_DEMO_DET_AM as a successor determination for ZENH_DEMO_DEP_DET_AM.  

 
8) Click on button Complete to finalize the creation of the new determination.  

 
9) Finally, you need to implement your business logic in the determination’s implementing 

class that you have specified in the previous steps. Double click on the implementing 
class in the determination details to start the implementation. 

 
Note: To make sure that the BOPF framework does not slowdown in its performance you 
should follow the rule “as much as necessary and as few as possible additional 
Determinations”. Instead of adding multiple Determinations to a BO node make sure that you 
group your determinations by triggering condition and transactional point in time (execution 
time point), i.e. everything that has the same triggering condition and the same transactional 
point in time shall be implemented in just one additional determination. This prevents the 
BOPF Framework from handling too many single Determinations (can cause quite some 
overhead) at runtime and therefore helps to prevent increased runtimes of the enhanced BO. 
You can find a few more details on this topic in section 3.4. 
 

3.3.11 Creating Queries 
Queries are the initial point of access to business objects. They allow performing searches on 
a business object to receive the keys or the data of specific or all node instances. Each query 
has an associated data structure representing the search criteria. To allow different search 
criteria at runtime, the consumer may hand over this query data type with discrete search 
values. A query returns the queried keys (along with the related data if required) of the 
business object node instances that match the provided search criteria.  
 
The BOBF Enhancement Workbench allows creating new queries of three different types: 
 

 Node Attribute Query:  
The search parameters are equal to the assigned node of the query. The search criteria 
can consist of value comparisons and value ranges on the attributes of the nodes. The 
query returns the instances of the assigned node whose attributes match the provided 
search parameters. 
 
Node attribute queries are recommended for all cases that do not need complex query 
logic. In contrast to custom queries, node attribute queries are only modeled and 
therefore do not have to be implemented (they are realized in a generic way). 
 

 Custom Query:  
Queries of this type execute application specific logic. In contrast to the node attribute 
query, this logic is realized in an implementing class that is assigned to the query. A 
Custom Query can have an arbitrary data type structure that is handed over by the 
consumer to the query implementation at runtime. This data type represents the search 
criteria of this query. 

 

 Custom Query (Generic Result Query):  
In addition it can also (but must not necessarily) have an arbitrary result table type and an 
associated result type (represents the structure of the result). A custom query of this type 
is also referred to as Generic Result Query. As per NetWeaver 7.31 Service Pack 06 
(also for NetWeaver 7.02 Service Pack 11) and above the BOPF Enhancement 
Workbench allows customers and partners creating their own Generic Result Queries. So 
the Enhancement Workbench now enables e.g. assigning a query to the ROOT node 
which returns instances or keys of e.g. the ITEM node. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

53 

53 

 
In general Custom Queries are used if the recommended node attribute queries do not 
fulfill the requirements, e.g. if specific query parameters must be handed over, or if the 
query logic is more complex than simply comparing attribute values. 

 

Query Type Input/ Search Criteria Output / Result Implementing 
Class 

Node Attribute 
Query 

Data Type with attributes from 
the BO node that the query is 
assigned to. 

A list of keys of the BO node 
instances that match the search 
criteria (and the node data of 
these instances). 

Not required. 

Custom Query Arbitrary Data Type with 
attributes that represent the 
search criteria 

A list of keys of those BO node 
instances that match the search 
criteria (and the node data of 
these instances) 

Required. 

Custom Query 
(Generic Result 
Query) 

Arbitrary Data Type with 
attributes that represent the 
search criteria 

An arbitrary result data type and 
related table type representing 
the result data 

Required. 

 
The table above shows a summarized classification of the different queries. As mentioned, 
new enhancement queries of the listed types can be added to extensible standard nodes and 
new sub nodes. The wizard for this task guides you through the following required steps. 

 
1) Open the corresponding Enhancement Object and select the node that the new query 

shall be assigned to. In the context menu of the node (click right mouse button) choose 
Create Query to start the wizard. Example: 

 
The new subnode ZENH_ROOT_SUBNODE of the Freight Order BO in the example 
Enhancement Object ZENH_TOR created in section 3.3.5. 

 
2) The first step in the wizard is to specify the name for the new query and a description on 

the semantic and purpose of this new entity. Examples: 
 
For a Node Attribute Query: 
Query Name : ZENH_DEMO_NA_QUERY 
Description  : Demo Enh. Node Attribute Query  
 
For a Custom Query: 
Query Name : ZENH_DEMO_CUST_QUERY 
Description  : Demo Enh. Custom Query 
 
For a Custom Query (Generic Result Query): 
Query Name : ZENH_DEMO_GENRES_QUERY 
Description  : Demo Enh. Generic Result Query 
 

3) Choose the Query Type. If you choose type Node Attribute Query finalize the creation of 
the new query with step 6. In case of type Custom Query continue with step 4. 
 

4) Specify the implementing class and a query data type for the new query (only required in 
case of Custom Queries). Example: 
 
Implementing Class : ZCL_ENH_Q_DEMO_CUST_QUERY 
Data Type    : ZENH_S_Q_DEMO_CUST_QUERY 
  
The implementing class must implement interface /BOBF/IF_FRW_QUERY. When 
finalizing the wizard, this interface will automatically be assigned to the specified class. 
 
The Data Type represents the attributes that are available to be used as search criteria. 
When creating the example Data Type ZENH_S_Q_DEMO_CUST_QUERY define e.g. 
the following subset of fields (the listed ones represent a subset of the attributes defined 
on the node that the new Query gets assigned to). 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

54 

54 

Component Typing Method Component Type 

TOR_ID Types /SCMTMS/TOR_ID 

TOR_CAT Types /SCMTMS/TOR_CATEGORY 

TOR_TYPE Types /SCMTMS/TOR_TYPE 

… … … 

 
An alternative in this example Custom Query would be simply reusing the complete Node 
Structure of the node that the query will be assigned to or of course any arbitrary 
structure. In contrast a Node Attribute Query automatically reuses the Node Structure, i.e. 
it provides all the available node attributes as search criteria).  
 
If you do not specify a result type and result table type you can already start implementing 
the query in the implementing class that you specified. In this case the result of the query 
is represented by the structure of the node that the query is assigned to (i.e. keys of 
found node instances along with the corresponding data if required). 
 

5) In case you create a Generic Result Query:  
 
As mentioned, this type of query allows an arbitrary data type as well as an arbitrary 
result type (and result table type) and is e.g. the basis for any Personal Object Work List 
(POWL) in SAP TM (see also section 6). 
 
In addition to the data type mentioned above, the wizard allows specifying a result type 
and result table type that represent an arbitrary result structure of the query instead of a 
fixed one. So the result is not necessarily returning data of the related node but simply a 
table of result type data records (e.g. merged data from different BO Nodes) that were 
found based on the provided data type search criteria.  
 
Most important when defining the result type: The first attribute must be DB_KEY of type 
/BOBF/CONF_KEY (Query QDB_ROOT_TENDERING_BY_ELEMENTS defined on the 
ROOT Node of BO /SCMTMS/TOR represents an example for such a Query). This 
means that the first attribute of the result structure is a node instance key of the node that 
the Generic Result Query is assigned to. The rest of the result structure attributes is 
arbitrary. Example: 
 
Result Data Type  : ZENH_S_Q_DEMO_GENRES_QUERY_R 
Result Table Type  : ZENH_T_Q_DEMO_GENRES_QUERY_R  
 
Attributes of the result data type: 
 

Component Typing Method Component Type 

DB_KEY Types /BOBF/CONF_KEY 

CREATED_ON Types /BOFU/TSTMP_CREATION_TIME 

TOR_ID Types /SCMTMS/TOR_ID 

TOR_CAT Types /SCMTMS/TOR_CATEGORY 

TOR_TYPE Types /SCMTMS/TOR_TYPE 

… … … 

 
Use the result data type as the line type for the mentioned result table type. 
 

6) Click on button Complete to finalize the creation of the new query.  
 

7) Implementation of the query logic is required in case of a Custom Query. Double click on 
the implementing class in the query details to start the implementation. 

 
SAP TM provides a Query Super class /SCMTMS/CL_Q_SUPERCLASS that can be 
reused for any Query implementation. It is recommended to let your Query 
implementations inherit from this super class as it provides some basic reuse methods 
(that can be overwritten) and enables an enhancement concept for existing standard 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

55 

55 

Queries. The BOBF Enhancement Workbench does not support enhancing existing 
standard Queries. How to enhance existing standard queries is described in section 6.1. 
 

3.3.12 Creating custom Business Objects 

As per NW 7.31 Service Pack 06 (also for NW 7.02 Service Pack 11) the BOPF 
Enhancement Workbench allows customers / partners to create their own Business Objects 
that they can fully implement on their own according to their requirements. In general all the 
functions introduced in the previous sections which allow creating enhancements for Standard 
BOs are also used to create the node hierarchy and structure as well as all relevant node 
elements like queries, actions, determinations and validations. 
 
As for the other functions, a wizard supports you in creating a new custom Business Object. 
The following steps illustrate an example: 
 
1) In the Enhancement Workbench click on button Custom Business Object (F2). 

 
2) The first step in the wizard is to specify a name and a description for the new BO. 

Example: 
 
Namespace  : Z 
Prefix   : CUST 
Name   : DEMO_BO 
Description  : Demo Custom Business Object 
 
In the next step you specify the name for the Constants Interface of the new Business 
Object. You can click on button Propose Name to let the wizard automatically propose a 
name for this interfaces that follows the BOPF naming conventions. Example: 
 
Constants Interface : ZIF_CUST_DEMO_BO_C 
 

3) The very first node of a Business Object is always the Root Node. In this step we specify 
the name of the Root Node (it is recommended to always choose ROOT as the name for 
this node) and a corresponding description. Moreover we need to specify the persistent 
data structure (and the transient if required) that contain the attributes of the node. The 
later on required combined structure that besides the data attributes also contains the 
technical key attributes KEY, PARENT_KEY and ROOT_KEY is generated automatically 
when finalizing the wizard. Example: 
 
Root Node Name   : Root 
Root Node Description : Demo Custom BO Root Node 
Persistent Structure  : ZSCUST_ROOT_D 
Transient Structure  : ZSCUST_ROOT_DT 
 

4) Double click on structure ZSCUST_ROOT_D to create the persistent structure of the 
Root Node. This will guide you to transaction SE11 were you can specify this structure. 
Example: 
 

 Demo Custom BO Persistent Node Structure 

Component Typing Method Component Type 

TOR_ID Types /SCMTMS/TOR_ID 

TOR_CAT Types /SCMTMS/TOR_CATEGORY 

TOR_TYPE Types /SCMTMS/TOR_TYPE 

.INCLUDE Types /BOFU/S_ADMIN_DATA 

 
As Enhancement Category for such structures always choose option Can be enhanced 
(character-type or numeric). Save and activate the structure. 
 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

56 

56 

5) Just like the persistent structure, the transient structure is created. Example: 
 

Short Description Demo Custom BO Transient Node Structure 

Component Typing Method Component Type 

RUNTIME_STATUS Types FLAG 

LAST_CHANGED Types /SCMTMS/DATETIME 

 
As Enhancement Category again choose option Can be enhanced (character-type or 
numeric). Save and activate the structure. 
 

6) The next step is to specify names for the Combined Structure, the related Combined 
Table Type and the Database Table that will contain the persisted Root Node data. These 
structures and table types are derived from the structures specified in step 5) and 6) and 
will be automatically created / generated by the wizard. Example: 
 
Combined Structure   : ZSCUST_ROOT_K 
Combined Table Type : ZTCUST_ROOT_K 
Database Table   : ZDCUST_ROOT 
 

7) Now we can finalize the wizard by clicking on button Complete. This will then generate all 
other required objects for the new Custom Business Object like the combined structures, 
the Database Table for the first Node ROOT and the Constants Interface. 

 

 
Picture: The new Custom BO after finalizing the wizard. 

 
Custom Business Objects are accessed just like any other BOPF BO, i.e. using a Service 
Manager and a Transaction Manager. Moreover you can also find and edit them in 
transaction /BOBF/CONF_UI. This allows adding e.g. cross BO associations to Standard BOs 
and a few other elements that are not (yet) supported by the Business Object Builder within 
the Enhancement Workbench. 
 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

57 

57 

3.4 Advanced BOPF Topics 
In this section, a few further topics are described that you should know about when 
developing applications with BOPF. Especially the section on performance should be 
reviewed and the recommendations kept in mind to prevent some serious performance 
issues. The majority of performance issues detected in BOPF are actually not caused by the 
framework itself but rather by coding using BOPF in a critical or suboptimal way. 
 

3.4.1 Properties 

Each node of a BOPF BO model has a corresponding node that carries related property 
information for the entities Node (i.e. for the node itself), Node Attributes, Actions, Action 
Parameters, Associations and Association Parameters. These properties are e.g. used to 
control the behavior of a node attribute on the UI. For this, the application can retrieve the 
current property values and react on it. If e.g. a node attribute has its property Read-Only set 
it is not ready for input on the UI. Or when property Mandatory is set, the attribute must be 
provided with a corresponding value and is not allowed to have no value. 
 
The following properties are available and can be set (information is stored in a node’s 
property node that usually has the same name like the node but with the postfix _PROPERTY 
assigned to it: 
 

Property Comment 

Enabled If set, the entity can be used. If not set, it cannot be used at all. 

Read-Only The entity can only be displayed but not changed. 

Mandatory The entity must have a value. Two semantics are distinguished: 

 Must be filled during the initial create or update modification call. 

 Must be filled the latest until finalize phase. 

Create-Enabled New instances of the node can be created/ Instances can be created by 
the help of an association. 

Update-Enabled Existing instances of the node can be changed. 

Delete-Enabled Existing instances of the node can be deleted. 

 
These properties can have a static or dynamic character. Static Properties are in general 
defined during design time, i.e. when modeling the respective BO entity. While Static 
Properties can be overruled by dynamic properties at runtime (“default property values”) Final 
Static Properties are final and cannot be changed at runtime. 
 
Dynamic properties can be changed at runtime. Lock-dependent dynamic properties are e.g. 
implicitly set to Read-Only in case the requesting User does not have a lock on the 
corresponding entity. Application specific dynamic properties are set by so called Property 
Determinations, e.g. a determination registered on AFTER_MODIFY that sets a node attribute 
on Read-Only if another attribute has a certain value. The already mentioned Property Node 
carry the dynamic properties for instances of the related node at runtime (i.e. they are 
transient nodes). 
 

Static Properties 
The static properties of a node are associated with so called Node Category. A Node 
Category can be used to bundle node instances that have an identical data structure but a 
different semantic / behavior. The default Node Category is available for each BO node and 
has the same name like the related node. During the modeling process, multiple Node 
Categories can be defined.  
 
Example: Different Node Categories for node Item might be provided, one that represents e.g. 
Freight Order items with associated costs and another one that represents items which are 
free of charge.  
 
In the SAP TM standard, this BOPF modeling concept has been rarely used. Instead the SAP 
Standard nodes carry specific node attributes that define the semantic of a node instance with 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

58 

58 

corresponding values (e.g. TRQ_TYPE and TRQ_CAT on the Root Node of the TRQ BO). 
Nevertheless, the static properties of a node are maintained via the corresponding Node 
Category, i.e. in most cases here via the standard node category. The static properties are 
defined at design time. The following picture shows an example in transaction 
/BOBF/CONF_UI where you can find the Node Categories in the list of Node Elements. 
 

 
Picture: The static properties of Node Attributes. 

 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

59 

59 

Dynamic Properties 
Dynamic Properties can be defined for various BOPF entities. In the table below you can see 
which entity can have or can make use of which dynamic property (not all entities can use all 
dynamic properties). 
 

 Property 

Entity Enabled Read-Only Mandatory Create-
Enabled 

Update-
Enabled 

Delete-
Enabled 

Node     Available Available 

Node 
Attribute 

Available Available Available    

Association Available   Available   

Association 
Parameter 

Available      

Action Available      

Action 
Parameter 

Available      

 
Enabled entities are available for requests. An entity that is not enabled cannot be used. 
Node Attributes can be Read-Only or Mandatory. A mandatory Node Attribute must be 
provided with a value before Save, i.e. a mandatory attribute must not necessarily have a 
value at the time when the carrying node is created.  
 
An Association can be Create-Enabled. For example, when creating Sub Node instances 
(e.g. for an Item Node) for a given Root Node instance, the Composition Association Item 
(pointing from the Root Node to the Item Node) must be provided to the modification table. 
When the dynamic property Create-Enabled of this Composition Association is set to false, 
the creation of Item Node instances will not be possible. 
 
With the properties Update-Enabled and Delete-Enabled for a node you can define whether 
instances of the node are allowed to be updated or deleted. But keep in mind that dynamic 
properties are transient and not persisted, i.e. they are set and only present at runtime in 
contrast to the static properties. 
 
In the configuration (design time) of a node you can set a flag Sub Tree Properties Used that 
allows propagating the dynamic properties Create-Enabled, Update-Enabled and Delete-
Enabled to the sub tree of the node. Such sub tree properties cannot be overwritten by other 
dynamic properties. 
 

Handling Dynamic Properties 
Dynamic properties are determined by Property Determinations. Such determinations are 
assigned for each node for which dynamic properties are used. They have the corresponding 
property Node defined as the request node and do not have a triggering condition. The 
determination is registered on transactional point in time Before Retrieve. The implementing 
class for the determination will contain the code to set the required dynamic properties. 
 
BOPF provides helper class /BOBF/CL_LIB_H_SET_PROPERTY that provides methods to 
set dynamic properties. They can be used in your own implementations. The following 
example uses method SET_ATTRIBUTE_MANDATORY: 
 
* Instanciate the helper class 

DATA: lo_set_property  TYPE REF TO /bobf/cl_lib_h_set_property, 

      ls_node_inst_key TYPE /bobf/conf_key, 

      lt_node_inst_key TYPE /bobf/t_frw_key2. 

 

CREATE OBJECT lo_set_property 

  EXPORTING 

    is_context = is_ctx 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

60 

60 

    io_modify  = io_modify. 

 

* Get list of node instance keys 

 

* Set Node Attribute  LABELTXT of the TOR Root Node as a 

* manadory attribute for each relevant node instance 

LOOP AT lt_node_inst_key INTO ls_node_inst_key. 

… 

  CALL METHOD lo_set_property->set_attribute_mandatory 

    EXPORTING 

      iv_attribute_name = /scmtms/if_tor_c=> 

                          sc_node_attribute-root-labeltxt 

      iv_key            = ls_node_inst_key 

      iv_value          = abap_true. 

… 

ENDLOOP. 

… 

 
Assume you implement method Execute of a Property Determination for the TOR Root Node 
and want to set the Root Node attribute LABELTXT as a mandatory field. In the above-
mentioned example, the helper class is instantiated with the parameters IS_CONTEXT and 
IO_MODIFY provided by the interface of method Execute (of the Determination Interface), i.e. 
the created object will know the same context like your determination. 
 
You can then loop over the node instance keys for which the determination is running and set 
the dynamic attribute property to Mandatory for mentioned attribute. Take a look at the BOBF 
helper class to find further such setter methods for dynamic properties of other entities. They 
are called in the same described way (with different parameters depending on the entity). 
 
With such a determination, you can e.g. implement a logic that switches a customer / partner 
specific extension fields to mandatory depending on the value of another attribute (e.g. the 
status of a document, etc.). 
 

3.4.2 Message Concept 

BOPF uses a message object for transporting messages through the call stack that might 
have been issued during the execution of e.g. an Action, a Determination, a Validation or a 
Query. The interface of each of these BOPF entities provides a corresponding parameter 
EO_MESSAGE which is a reference to interface /BOBF/IF_FRW_MESSAGE. In this 
exporting parameter, you can find the message object instances that have been issued during 
execution of the related BOPF entity. 
 
The concept is based on class-based messages, i.e. you can create your own message 
classes that should inherit from the BOPF standard class /BOBF/CM_FRM. You can then 
instantiate a BOPF message of such a class and attach it to the message object as shown in 
this example: 
 
DATA co_message TYPE REF TO /bobf/if_frw_message. 

CREATE OBJECT lm_applog TYPE /scmtms/cm_applog_msg 

  EXPORTING 

      symptom            = /scmtms/cm_applog_msg=>sc_symptom_log_ctx 

      ms_origin_location = ls_location  (key of affected entity) 

 Severity           = ls_msg-msgty (severity of the message) 

 textid             = ls_t100   (key for message text) 

 mv_attr1           = ls_msg-msgv1 

 mv_attr2           = ls_msg-msgv2 

 mv_attr3           = ls_msg-msgv3 

 mv_attr4           = ls_msg-msgv4 

 mv_detlevel        = lv_detlevel 

 mv_probclass       = lv_probclass 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

61 

61 

 ms_context         = is_context 

 mv_bopf_location   = iv_bopf_location_key. 

  
You can then add this message object instance to parameter EO_MESSAGE by using its 
method ADD_CM as follows: 
 
co_message->add_cm( io_message = lm_applog ). 

 
Note that multiple Message Object instances can exist at runtime that independently store 
messages. In the example above we have actually created a new message object 
CO_MESSAGE besides the mentioned EO_MESSAGE. If you want to pass any message of 
e.g. an Action trough the call stack you need to assign your message instances to parameter 
EO_MESSAGE of course. 
 
As you can see in this example, it actually takes quite some lines of coding to e.g. just pass a 
simple error message. Moreover, for support and maintenance purposes this approach is not 
suited as it is not possible to properly use the Where-Used-Functionality to find out where a 
certain message has been issued. It is therefore recommended to always use the concept for 
issuing messages as done in the following simple example of an Action implementation: 
 
  FIELD-SYMBOLS: <fs_parameters> TYPE zenh_s_a_root_demo_action. 

 

  DATA: lv_temp  TYPE c. 

 

* take over action parameters 

  ASSIGN is_parameters->* TO <fs_parameters>. 

 

* use parameter Z_FLAG 

  IF <fs_parameters>-success = abap_true. 

    MESSAGE s002(zenh_messages) INTO lv_temp. 

  ELSE. 

    MESSAGE e003(zenh_messages) INTO lv_temp. 

  ENDIF. 

 

  CALL METHOD /scmtms/cl_common_helper=>msg_helper_add_symsg( 

    EXPORTING 

      iv_key      = /scmtms/if_tor_c=>sc_bo_key 

      iv_node_key = /scmtms/if_tor_c=>sc_node-root 

    CHANGING 

      co_message  = eo_message ). 

 

In this example the “classical” ABAP instruction MESSAGE is used to issue e.g. a success or 
an error message that was defined in a “classical” message class with transaction SE91. The 
message is issued into a variable of type C (yes, that’s right, a character with length 1). This 
ensures that the message is not actually displayed somewhere but nevertheless it will fill the 
corresponding fields SY-MSGTY, SY-MSGNO, etc. i.e. all relevant SY-MSG* fields.  
 
Helper class /SCMTMS/CL_COMMON_HELPER, method MSG_HELPER_ADD_SYMSG 
now allows the direct transformation of the SY-MSG* fields into a corresponding BOPF 
message object instance that can be added e.g. to the Action Interface Parameter 
EO_MESSAGE. 
 
In this example the coding is much easier to understand, it does not comprise that many lines 
and the Where-Used-Functionality will definitely find all the places in coding where a message 
is issued. The concept reduces the implementation effort, keeps the coding readable and 
enables support and maintainability. In customer/partner specific implementations this should 
be the standard approach for issuing messages that need to be passed through the call stack 
(all the way up to be displayed on the UI). 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

62 

62 

3.4.3 Performance in the context of BOPF 

As mentioned in the introduction the majority of performance issues detected in BOPF are 
actually not caused by the framework itself but rather by coding using BOPF in a critical or 
suboptimal way. In this section, a few use cases are listed that you should keep in mind when 
using the BOPF Framework for your own development or enhancements. 
 

Mass Data Processing 
The BOPF Framework enables mass data processing. Developers must implement all their 
BOPF related coding in a way that the mass data processing capabilities are utilized, i.e. in 
any case you need to make sure that you exclusively use mass calls to not run into 
performance issues with your implementation. Ideally the number of a BOPF method call is 
completely independent of the number of node instances that are to be processed with the 
call. Let’s take a look at an example to illustrate this: 
 
A wrong BOPF call that is not mass enabled: 
 
LOOP AT it_key INTO ls_key. 

  CLEAR lt_key. 

  APPEND ls_key TO lt_key. 

 

  io_read->retrieve( 

    EXPORTING 

      iv_node = if_constant=>sc_node 

      it_key = lt_key 

    IMPORTING et_data = lt_node ). 

 

  READ TABLE lt_node INDEX 1 INTO ls_node. checksy-subrc. 

… 

ENDLOOP. 

 
In this example the Retrieve is called directly in a loop, sequentially and separately for each of 
the node instance keys contained in internal table IT_KEY, i.e. for one node instance at a 
time. Each node instance is then further processed before the next node instance is read. 
Here the BOPF Framework is overloaded with unnecessary calls. This approach dramatically 
slows down the performance and must be prevented, not only for Retrieve calls like in this 
example but also for RetrieveByAssociation, Query and Action calls.  
 
The right way to implement a mass enabled call: 
 
io_read->retrieve( 

  EXPORTING 

    iv_node = if_constant=>sc_node 

    it_key = lt_key 

  IMPORTING et_data = lt_node ). 

 

LOOP AT lt_node_data ASSIGNING <fs_node_data>. 

… 

ENDLOOP. 

 
In this revised example the Retrieve is first called for all node instance keys in IT_KEY before 
the returned node data is used for further processing. So the basic principle to prevent 
performance issues is to first execute a Retrieve, a RetrieveByAssociation, a Query, an 
Action or a Convert (Convert Alternative Key) with all relevant node instance keys (that are 
passed to the corresponding method by table IT_KEY) and only afterwards process returned 
data in a loop if required. 
 

Determinations and Validations 
Assume you have added e.g. an additional node to a Standard BO and need to add business 
logic to this node by implementing Determinations and Validations. Remember that these 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

63 

63 

BOPF entities are not called explicitly in the coding but are triggered and executed by the 
BOPF Framework automatically, depending on the transactional point in time and the 
triggering condition that they are registered for. 
 
General rules for creating new Determinations and Validations are: 
 

 As much Determinations and Validations as necessary as few as possible. This will 
prevent overloading the BOPF Framework with too many calls. Each call creates a 
certain overhead in the framework that sums up to quite some runtime and memory 
consumption with the number of Determinations and Validations that are executed by the 
framework. 
 

 To keep the number of Determinations and Validations as small as possible group them 
by their assigned transactional point in time, i.e. if possible only one Determination and 
Validation per transactional point in time. In the majority of cases the triggering condition 
of e.g. a Determination registered on the same transactional point in time is the same so 
they can be grouped. 

 
Example: Instead of implementing separate Determinations for each node attribute and 
register them on transactional point in time After Modify a single Determination should be 
implemented that contains the determination of all relevant node attribute.  
 

 This approach will prevent the BOPF Framework from getting overloaded by too many 
Determination calls for a specific transactional point in time. Only in specific use cases it 
may be required to have an additional Determination registered to the same transactional 
point in time. This approach has been followed in the SAP TM standard implementation 
since TM 8.0 based on performance tests. Exceptions are e.g. the usage of the BOPF 
library determinations that can be reused for drawing document numbers or the 
administrative data of a node (DET_DRAW_NUMBER and DET_ADMIN_DATA). 
 

 Before implementing a second Determination or Validation with the same transactional 
point in time you should check other options first. 

 

 You should only implement exactly one Consistency and one Action Validation per BO 
node which will further help to reduce the number of Determination and Validation calls. 
Do not implement separate Consistency Validations for each aspect of the check logic 
required for a node and do not implement a separate Action Validation for each Action 
assigned to the corresponding node. 

 

Property Determinations 
Dynamic Properties must be determined only by corresponding Property Determinations that 
are registered on Before Retrieve. Such a determination must not change any data except 
that of the property node available for the related node. It is not required to delete old dynamic 
properties before creating new ones. Existing entries available in the buffer will automatically 
be updated. 
 

3.4.4 Status & Action Management (Consistency Groups) 

For handling statuses of Business Object instances the reuse component Status & Action 
Management (SAM) is still in use in the TM 9.x release as it has been in predecessor 
releases.  
 
Starting with SAP TM 8.0 the Status Management has been also realized manually by adding 
corresponding status attributes to BO nodes and Determinations that contain the logic to 
determine the correct status depending on the current BO data. This “manual” approach has 
the advantage that customers and partners can use the BOPF enhancement technologies 
presented so far to add further status attributes for their very own purposes. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

64 

64 

So for customers and partners it is recommended to consider this as the first approach. 
Adding a new attribute to a BO node representing a status and adding a new determination 
with the required logic to set the new status attribute can be simply done by the means 
provided with the Enhancement Workbench. Nevertheless, there might be use cases where 
the usage of SAM helps getting to the required solution. The first use case shows how a 
Consistency Group can be configured and used to set a status. The second use case 
described how to use a Consistency Group to prevent saving a transaction in case of errors. 
 

Consistency Group for setting a status value 
The first use case is based on a real-world scenario where a customer wanted a validation to 
update a certain new status attribute. Well, as we learned, actually only determinations can 
change data while validations only check data based on a given logic and issue e.g. an error 
message that is then displayed on the UI. But we will see how this can be accomplished. 
 
The customer has added a new status attribute and assigned a new determination to the Item 
Node of the Forwarding Order Business Object (technical name /SCMTMS/TRQ). At runtime, 
the determination resets the new status attribute to its initial value (e.g. Check is Pending). 
 
When the Forwarding Order is saved, a validation shall be executed which executes a call to 
an external system where the item data is checked for certain criteria. Depending on the 
check result for an item, the new status attribute shall be set to the corresponding value 
Inconsistent or Consistent. 
 
In case of a business document created from scratch the external check will be executed for 
all items with the effect that saving takes a bit more time. But if item data is then later on 
changed, the validation is used to only execute the external check again for those items which 
have the status Check Pending or Inconsistent. So, in this case we need to get the validation 
to trigger an update of the status attribute. This can be achieved by assigning a validation to a 
Consistency Group.  
 
The following steps describe how to setup and implement an example. Of course, you should 
create a corresponding Enhancement Object for BO /SCMTMS/TRQ (if not yet done up until 
here  see section 3.3.2) 
 
1) Creating an Extension Field to represent the new Status. 

 
First of all create an extension field that will represent the new status on the Item node of 
the Forwarding Order BO (/SCMTMS/TRQ). How to do this in detail is described in 
section 3.3.4. Create the following example: 
 
Create the Append Structure ZENH_TRQ_ITEM in the (persistent) Extension Include of 
the Item node and place the following example status attribute there: 
 

Attribute Typing Method Component Type 

ZENH_CONS_STATUS Types /SCMTMS/CONSISTENCY_STATUS 

 
Make sure to define Enhancement Category Can be enhanced (character-type or 
numeric) for the new Append. Then save and activate the Append Structure. 
 

2) Creating a new Action for setting the new Status. 
 
In this step we create a new Action that will be used to trigger the setting of the new 
status. Actually, this Action will not contain an implementation with corresponding code 
but is rather a modelled Action that only serves as a trigger in the context of Status & 
Action Management. As this kind of Action cannot be created via the Enhancement 
Workbench, we use a workaround that nevertheless allows you adding the Action as an 
element to the Enhancement Object. Create the Action as follows: 
 

 Start transaction /BOBF/CONF_UI and use the following path in the Business Object 
Browser to navigate to your Enhancement Object: Transportable Business Objects  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

65 

65 

Business Process Objects  /SCMTMS/TRQ  Sub Business Objects  (your 
Enhancement Object). 
 

 Double click on your Enhancement Object which is now displayed in the Business 
Object Details Browser. 
 

 Now the “trick” to allow adding elements to the Enhancement Object: In the command 
field enter DEBUG (and hit ENTER). 
 

 
Picture: Switching the Enh. Object into Debug Mode. 

 

 As you can see on the following popup, this debug mode is actually only intended for 
support purposes and should not be used in general. Nevertheless, it allows adding 
enhancement elements to the Enhancement Object that are not (yet) supported with 
the Enhancement Workbench directly. All enhancement elements added for this 
example will be assigned to the Enhancement Object, i.e. here we only use features 
that keep the standard BO modification free. But as stated in the popup warning 
message: 
 

 
Picture: Warning before switching into Debug Mode. 

 
Note that changes are possible in this debug mode that can lead to 
inconsistencies, a corrupt model and unexpected runtime behavior. So use it 
with the required care. 
 
Click on button Yes to continue and switch into Debug Mode for the Enhancement 
Object. Moreover, switch into Change Mode (Ctrl+F1). 
 

 Now create the intended Action by navigating along the following path in the 
Enhancement Object: Node Elements  ITEM  Actions. Right mouse click on 
Actions will bring up a popup menu. Choose option Create Action. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

66 

66 

 
Picture: Creating an Action. 

 
Create an Action with the following attributes on the initial screen of the guided 
procedure. All other Action attributes are filled automatically in this use case: 
 

Attribute Value/Content Comment 
Action Name ZENH_SET_CONS_STATUS The name of the Action. 

Description Enhancement Action for setting a 
status 

Action Description. 

Node ITEM Node that the Action is assigned to. 

Action Category Object-Specific Action The Action is object-specific (in contrast to 
a Framework Action). 

Action 
Cardinality 

Multiple Node Instances The Action can be executed for multiple 
Node instances at a time (i.e. it is mass-
enabled). 

Change Mode Exclusive Write Mode Node Instances are locked exclusively in 
this case. 

Action Can Be 
Enhanced 

Yes Action can be enhanced if required. 

 

 Click on the Finalize button to create the Action with the given attributes. Then save 
and activate the Enhancement Object. You can then find the new Action in the Node 
Elements of the Item Node in this example. 
 

 
Picture: Guided Procedure for creating the Action. 

 

 
Picture: Success messages after activating Enhancement Object. 

 
  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

67 

67 

3) Creating a new Validation. 
 
In the next step we create the Validation by navigating along the following path in the 
Enhancement Object: Node Elements  ITEM  Validations. Right mouse click on 
Validations will bring up a popup menu. Choose option Create Validation  Consistency 
Validation. 
 

 
Picture: Creating a Validation. 

 

 Create a Validation with the following attributes on the initial screen of the guided 
procedure. All other Action attributes are filled automatically in this use case: 
 

Attribute Value/Content Comment 
Validation Name ZENH_VAL_ITEM_CONS_STATUS The name of the Validation. 

Description Enhancement Consistency Validation Validation Description. 

Node ITEM Node that the Validation is assigned to. 

Validation 
Category 

Consistency Check The Validation represents a Consistency 
Check 

Class/Interface ZCL_ENH_V_ITEM_CONS The implementing class for the 
Validation. 

Change Mode Exclusive Write Mode Node Instances are locked exclusively in 
this case. 

Action Can Be 
Enhanced 

Yes Action can be enhanced if required. 

 

 
Picture: Guided Procedure for creating the Validation. 

 
Navigate to the next screen of the guided procedure and define the following Request 
Nodes for the Validation: 
 

Node Create Update Delete Check 
Item No Yes No Yes 

 
With this setup, we have defined that the Item node triggers the Validation execution 
if the trigger condition Create or Check is fulfilled, i.e. it will be executed when Item 
node instances are updated/changed or the Item Node content is checked. 
 

 
Picture: Node Assignment to Validation. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

68 

68 

Navigate to the next screen of the guided procedure and assign the Validation to 
Node Category ITEM. 
 

 
Picture: Assigning the Validation to Node Category ITEM. 

 

 Click on the Finalize button to create the Validation with the given attributes. You can 
then find the new Validation in the Node Elements of the Item Node in this example. 
 
Double click on your Validation to display its details. Make sure that you are in 
Change Mode. Then double click on the implementing class name to create this class 
and the implementation for the Validation. Some simple example coding for the 
Execute method of the Validation could look as follows: 
 
METHOD /bobf/if_frw_validation~execute. 

* Declarations 

  FIELD-SYMBOLS: <fs_trq_items> TYPE /scmtms/s_trq_item_k. 

 

  DATA: lt_trq_items  TYPE /scmtms/t_trq_item_k, 

        ls_failed_key TYPE /bobf/s_frw_key. 

 

  IF sy-uname = 'DEMOUSER'. 

    " Get the Item Data 

    io_read->retrieve( 

      EXPORTING 

        iv_node      = /scmtms/if_trq_c=>sc_node-item 

        it_key       = it_key 

        iv_fill_data = abap_true 

      IMPORTING 

        et_data      = lt_trq_items ). 

 

    LOOP AT lt_trq_items ASSIGNING <fs_trq_items>. 

      " If the Tare Weight Value is > 2000 

      " then throw a failed key 

      IF <fs_trq_items>-pkgun_wei_val > 2000. 

        CLEAR ls_failed_key. 

        ls_failed_key-key = <fs_trq_items>-key. 

        APPEND ls_failed_key TO et_failed_key. 

      ENDIF. 

    ENDLOOP. 

  ENDIF. 

 

ENDMETHOD. 

 
With this coding the Validation will check the value of the Tare Weight for a 
Forwarding Order Item whether it is larger than 2.000. If so it will return a Failed Key 
for such an Item instance and set its new status field from 01 Check Pending (or 
[blank]) to 02 Check Inconsistent. Otherwise the new status field will be set to Check 
Consistent. 
 

 Save and activate the implementing class and then also the Enhancement Object. 
 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

69 

69 

4) Creating a new Status Variable. 
 
Create a Status Variable by navigating along the following path in the Enhancement 
Object: Node Elements  ITEM  Status Variables. Right mouse click on Status 
Variables will bring up a popup menu. Choose option Create Status Variable. 
 

 
Picture: Creating a Status Variable. 

 

 Create a Status Variable with the following attributes: 
 

Attribute Value/Content Comment 
Status Variable 
Name 

ZENH_ITEM_CONS The name of the Status Variable. 

Description Enhancement Item Cons. Status 
Var. 

Status Variable Description. 

Node ITEM Node that the Validation is assigned to. 

Status Variable 
Category 

Consistency Status (3 states) Consistency status with 3 states 
(check pending, consistent and 
inconsistent). 

Related Attribute 
Name 

ZENH_CONS_STATUS The attribute on the given Node that will 
hold the status value (in this example this 
is the extension field that we added in step 
1). 

 

 
Picture: Specifying the Status Variable. 

 

 Save and activate the Enhancement Object. You can then find the new Status 
Variable in the Node Elements of the Item Node in this example. 
 

5) Creating a new Status Schema. 
 
Now create a Status Schema by navigating along the following path in the Enhancement 
Object: Node Elements  ITEM  Status Schemas. Right mouse click on Status 
Schemas will bring up a popup menu. Choose option Create Status Schema. 
 

 
Picture: Creating a Status Variable. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

70 

70 

 

 Create a Status Schema with the following attributes: 
 

Attribute Value/Content Comment 
Status Schema 
Name 

ZENH_ISS The name of the Status Schema (make 
sure it’s not longer than 10 characters!). 

Description Enhancement Status Schema for 
Item Node. 

Status Schema Description. 

Node ITEM Node that the Validation is assigned to. 

 

 
Picture: Specifying the Status Schema. 

 

 Save and activate the Enhancement Object. You can then find the new Status 
Schema in the Node Elements of the Item Node in this example. The Status Schema 
requires further details to be configured. This is described in the next step. 
 
 

6) Specifying the details of the new Status Schema. 
 
The details of the Status Schema can be specified and maintained in the View Cluster 
/BSAM/VC_STM via transaction SM34.  
 

 
Picture: Entry Screen of transaction SM34. 

 

 In the first step create an entry for the Status Schema in the View Cluster with the 
following table. But before we can create this entry, we need to determine the GUID 
of the Status Schema that was created in step 5. This GUID can be found as follows: 
 

o Start Transaction SE16 and enter /BOBF/STA_SCHEMA as Table Name and 
hit Enter (this table contains the BOBF BO Meta Data for Status Schemas). 
 

o On the initial screen enter the name of your Enhancement Object (in this 
example ZENH_TRQ) in field NAME and the name of the Status Schema 
created in step 5 (in this example ZENH_ISS) in field SCHEMA_NAME  
press F8. 

  
o You should now see the entry for your Status Schema as represented on the 

database. Copy the GUID in field STA_SCHEMA_KEY and keep it for 
creating the first entry in the View Cluster /BSAM/VC_STM. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

71 

71 

In the Dialog Structure of the View Cluster maintenance screen click on Status 
Schema and then click on button New Entries. Enter the following values in the 
related input fields and save the entry: 
 

Attribute Value/Content Comment 
Schema GUID (GUID of the Schema created for the 

Enhancement Object  see 
remarks above) 

The GUID of the Status Schema that was 
created and assigned to the Item Node via 
the Enhancement Object. 

Node Name ITEM The node that the Status Schema is 
assigned to. 

Status Schema ZENH_ISS The name of the Status Schema 

Schema Use B = BOBF Status & Action Management 
Schema 

Describing Text Enhancement Status Schema Description. 

 
Remark: In step 5 it was mentioned to restrict the length of the Status Schema name 
to a maximum of 10 characters (see table with data for the Status Schema). The field 
for the Status Schema in this step 6 is (currently) restricted to 10 characters, i.e. 
longer names will not fit into this field. 

 
Picture: Maintenance screen for View Cluster /BSAM/VC_STM. 

 

 
Picture: Entry for Status Schema. 

 

 In the Dialog Structure of the View Cluster maintenance screen click on Status 
Variable and then click on button New Entries. Enter the following values in the 
related input fields and save the entry: 
 

Attribute Value/Content Comment 
Status Variable ZENH_ITEM_CONS The name of the used Status Variable. 

Describing Text Enh. Item Cons. Status Var. Description. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

72 

72 

 
Picture: Entry for Status Variable. 

 

 In the Dialog Structure of the View Cluster maintenance screen click on Status Value 
and then click on button New Entries. Enter the following values in the related input 
fields (in the given sequence) and save the entries: 
 

Status Value Describing Text Initial Status Finalization Status 
[blank] Undefined No No 

01 Check Pending Yes No 

02 Check Inconsistent No No 

03 Check Consistent No No 

 
Remark: Remember that a Status Variable with 3 states was chosen for this example 
but we actually maintained 4 Status Values in this step. In the table above the first 
entry represents a [blank] value. With this value present, the status change will also 
work for existing Item Node instances that did not have the new status field before. 
So we do not necessarily have to create e.g. a Determination (or even run a DB 
Table migration) that at the beginning sets the initial status to 01 Check Pending for 
all instances of the Item Node. The value [blank] is so to say handled just like value 
01 Check Pending. 
 

 
Picture: Entries for Status Variables. 

 
Finally you should see the entered values as shown in the following picture. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

73 

73 

 
Picture: The final Status Values. 

 

 In the Dialog Structure of the View Cluster maintenance screen click on Action and 
then click on button New Entries. Enter the following values in the related input fields 
and save the entry. 
 

Attribute Value/Content Comment 
Action ZENH_SET_CONS_STATUS The name of the used Action to trigger the 

setting of the status. 

Describing Text Enh. Action for setting status Description. 

Target Status 
Variable 

ZENH_ITEM_CONS The Status Variable that shall be 
influenced by the given Action. 

 

 
Picture: Entry for Action. 

 

 In the Dialog Structure of the View Cluster maintenance screen click on Action 
Precondition and then click on button New Entries. Enter the following values in the 
related input fields (in the given sequence) and save the entries: 
 

Source Status Variable Status Value Precondition Type 
ZENH_ITEM_CONS 01 Enable 

ZENH_ITEM_CONS 02 Enable 

ZENH_ITEM_CONS 03 Enable 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

74 

74 

 
Picture: Entries for Action Precondition. 

 

 In the Dialog Structure of the View Cluster maintenance screen click on Action Effect 
and then click on button New Entries. Enter the following values in the related input 
fields (in the given sequence) and save the entries: 
 

Status Value 
01 

02 

03 

 

 
Picture: Entries for Effect. 

 
7) Assigning the new Status Schema to the relevant Node Category. 

 
This step is mentioned here explicitly as it actually would require the modification of a BO 
Meta Data Table which contains the information about the Node Categories. In the 
example, the new Status Schema was assigned to the Item Node of BO /SCMTMS/TRQ. 
In standard SAP TM this node has only a single Node Category ITEM. To prevent any 
modification for assigning the new Status Schema to this Node Category, make sure that 
note 2145188 is implemented in your SAP TM System. This note contains an adjustment 
that works as follows: If the Node only has one Node Category and also has only one 
Status Schema assigned, then this Status Schema will be used as the default Schema at 
runtime. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

75 

75 

 
8) Creating a new Consistency Group. 

 
Navigate back to the Enhancement Object as described in step 2, switch on the Debug 
Mode. Moreover, switch into Change Mode (Ctrl+F1). 
 
Create a Consistency Group by a Right mouse click on Groups in the Business Object 
Details Browser. In the popup menu choose option Create Group  Consistency Group. 
 

 
Picture: Creating a Consistency Group. 

 

 On the first screen of the guided procedure enter the following data to specify the new 
Consistency Group: 
 

Attribute Value/Content Comment 
Group ZENH_CONS_GROUP The name of the Consistency Group. 

Description Enhancement Consistency Group Description. 

Group Category Consistency Group A Consistency Group can be used to set a 
Consistency Status depending of the result 
of validations assigned to this Group. 

Node ITEM The BO Node that the Group is assigned 
to. 

Action ZENH_SET_CONS_STATUS The Action that triggers the Status 
Change. 

Status Variable ZENH_ITEM_CONS The Status Variable that represents the 
new status in this example. 

 

 Navigate to the next screen of the guided procedure and assign the Validation 
created in step 3 to the new Consistency Group. Navigate along the following path: 
ZENH_CONS_GROUP  Validations. 
 
You can find the Validation ZENH_VAL_ITEM_CONS_STATUS in the list of 
Validations. Make sure that this new Validation is assigned to the Consistency Group 
by setting the flag in front of the Validation name. 
 

 Click on the Finalize button to create the Consistency Group with the given attributes. 
You can then find the new Consistency Group in the Groups section of the 
Enhancement Object in this example. 
 

 Save and activate the Enhancement Object. 
 

9) Test the example. 
 

 Open an existing Forwarding Order, change the Tare Weight value for an item of this 
Forwarding Order from 1.700 to e.g. 2.500 and hit Enter. First of all the status is set to 
status value 01 Check Pending in this example. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

76 

76 

 
Picture: Status 01 Check Pending. 

 
Remark: In the picture above you can see the new status value displayed which is not 
part of the standard User Interface. Once you have worked through section 5 on User 
Interface Enhancements, it would be a nice exercise for you to customize your User 
Interface the same way to make it display the additional Item Status on the Item 
Details screen of the Forwarding Order UI as shown above. 
 

 Now click on button Save to save the Forwarding Order and check the status of the 
selected item again. The status value now has changed from 01 Check Pending to 02 
Check Inconsistent. 
 

 
Picture: Status 02 Check Inconsistent. 

 

 Adjust the Tare Weight value from 2.500 to e.g. 1.500, save the Forwarding Order 
again and check the status of the selected item. This time the status value has 
changed from 02 Check Inconsistent to 03 Check Consistent. 
 

 
Picture: Status 03 Check Inconsistent. 

 
  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

77 

77 

Consistency Group for preventing Save 
The first use case makes use of a Consistency Group and the other involved elements to set 
a status field on the Forwarding Order Item Node depending on a Validation result. This 
behavior of the Consistency Group was achieved by assigning it a Node, an Action and a 
Status Variable (see step 8 of the first use case). 
 
The second use case is based on the first. In this case not only the status shall be set but in 
case of the Validation returning Failed Keys (i.e. errors or inconsistencies) the Save of the 
transaction shall be prevented. It is a quite common use case that a transaction shall not be 
Save-enabled in case of errors or inconsistencies. 
 
Just like for the first use case the following steps describe how to setup and implement an 
example. Access the required Enhancement Object as described in step 2 of the first 
example, i.e. in Debug Mode and Change Mode. 
 
1) Creating a new Consistency Group. 

 
Navigate to the Enhancement Object and switch on the Debug Mode. Moreover, switch 
into Change Mode (Ctrl+F1). 
 
Create a Consistency Group by a Right mouse click on Groups in the Business Object 
Details Browser. In the popup menu choose option Create Group  Consistency Group. 
 

 
Picture: Creating a Consistency Group. 

 

 On the first screen of the guided procedure enter the following data to specify the new 
Consistency Group: 
 

Attribute Value/Content Comment 
Group ZENH_CONS_GROUP_SAVE The name of the Consistency Group. 

Description Enh. Cons. Group to prevent Save Description. 

Group Category Consistency Group A Consistency Group can be used to set a 
Consistency Status depending of the result 
of validations assigned to this Group. 

Node [blank  nothing chosen] No specific BO node in this use case 

Action [blank  nothing chosen] No specific Action in this use case. 

Status Variable [blank  nothing chosen] No Status Variable in this use case as this 
Consistency Group shall serve as a means 
to prevent Save. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

78 

78 

 
Picture: Consistency Group for preventing Save. 

 

 Navigate to the next screen of the guided procedure and assign the Validation 
created in step 3 of the first use case to the new Consistency Group. Navigate along 
the following path: ZENH_CONS_GROUP  Validations. 
 
You can find the Validation ZENH_VAL_ITEM_CONS_STATUS in the list of 
Validations. Make sure that this Validation is assigned to the Consistency Group by 
setting the flag in front of the Validation name. 
 

 
Picture: Assigning Validations to the Consistency Group. 

 

 Click on the Finalize button to create the Consistency Group with the given attributes. 
You can then find the new Consistency Group in the Groups section of the 
Enhancement Object in this example. 
 

 Save and activate the Enhancement Object. 
 

2) Creating a new Consistency Group. 
 

 Open an existing Forwarding Order, change the Tare Weight value for an item of this 
Forwarding Order from e.g. 2.500 and hit Enter. First of all the status is set to status 
value 01 Check Pending in this example. 
 

 Now click on button Save to save the Forwarding Order. With the first use case 
implemented, the status value now has changed from 01 Check Pending to 02 Check 
Inconsistent. Moreover, the Save is now prevented as you can see in the message 
log of the Forwarding Order User Interface. 
 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

79 

79 

 
Picture: The status is set to Check Inconsistent and Save is prevented. 

 

3.4.5 Change Document Adapter Enhancements 
For many types of Business Documents used in SAP TM it is possible or even might be 
required to track changes. This allows finding out what has changed (e.g. an attribute from 
value A to value B) and when. 
 
In the Document Types (Customizing) for SAP TM Business Documents like Forwarding 
Order, Freight Order and others you can define that changes shall be tracked. 
 

 
Picture: Example Forwarding Order Type with activated tracking of Document Changes. 

 
For the purpose of logging changes to a Business Object, this object is defined as a so called 
Change Document Object (CDO). Such a CDO contains the information about the Database 
Tables that hold the data for the Business Object. Changes to a Business Object are then 
saved via the related CDO. In standard, the following Change Document Objects are 
available (delivered with SAP TM 9.3): 
 

Change Document 
Object (CDO)  

BOPF BO Description 

/SCMTMS/CD_CFIR /SCMTMS/CUSTFREIGHTINVREQ Forwarding Settlement Document 

/SCMTMS/CD_FAG /SCMTMS/FREIGHTAGREEMENT Freight Agreement 

/SCMTMS/CD_RATE /SCMTMS/TC_RATES Transp. Charges Rates 

/SCMTMS/CD_SCAL /SCMTMS/TC_SCALE Transp. Charges Scales 

/SCMTMS/CD_SFIR /SCMTMS/SUPPFREIGHTINVREQ Freight Settlement Document 

/SCMTMS/CD_TARF /SCMTMS/TC_TARIFF Transp. Charges Tariff 

/SCMTMS/CD_TCCS /SCMTMS/TCC_TRNSP_CHRG Transp. Charges Calculation Sheet 

/SCMTMS/CD_TOR /SCMTMS/TOR Freight Oder / Freight Unit / Booking 

/SCMTMS/CD_TRQ /SCMTMS/TRQ Forwarding Order 

/SCMTMS/CD_TTMP /SCMTMS/TENDERINGTEMPLATE Tendering Profile 

 
The Change Document Object mentioned in this table can be seen in transaction 
SCDO_NEW. The following example is again a real customer enhancement use case. You 
will see how to enable tracking changes for data that is stored on a customer-specific 
Enhancement Node for the Forwarding Order BO (/SCMTMS/TRQ) (Remark: If you are not 
yet familiar with User Interface Enhancements, you should consider working through section 5 
first before continuing with this enhancement use case). 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

80 

80 

Visit http://help.sap.com to navigate to the detailed documentation for Change Documents, 
their setup and concepts. You can find this documentation under the BC Extended Application 
Function Library. 
 
Remark: You should – as always – keep in mind the performance of your system / 
application, i.e. with the Change Document functionality active you add a certain additional 
amount of runtime and memory consumption of course. So, Change Documents should be 
only considered where really required. They might e.g. help finding errors in certain processes 
but should be switched off again after having solved the root causes of these errors if they are 
not actually needed for any other purposes. 
 
1) Create a new Subnode for the Forwarding Order (/SCMTMS/TRQ) as described in 

section 3.3.5. If not yet available, you first need to create a corresponding Enhancement 
Object for standard BO /SCMTMS/TRQ that you can then assign the new Subnode to. 
Use the following details in the Wizard for creating Subnodes in the Enhancement 
Workbench: 
 

Attribute Value/Content Comment 
Node Name ZENH_TRQRT_SUB The name of the new Subnode. 

Description Demo Enh. TRQ Root Subnode Description. 

Node is extensible Yes It shall be allowed to enhance the new 
Subnode. 

Persistent Extension 
Include 

ZENH_INCL_P_TRQRTSUB Just specify the required Dummy field in 
this structure. 

Persistent Structure ZENH_S_TRQRT_SUB_D Name of the persistent structure. The 
following table shows the attributes to be 
placed there. 

Transient Structure ZENH_S_TRQRT_SUB_DT Name of the transient structure. The 
following table shows the attributes to be 
placed there. 

 
For the Persistent Structure define the following attributes: 
 

Component Typing Method Component Type 

ZENH_CHNG_DATE Types /SCMTMS/DATETIME 

ZENH_CHNG_USER Types /SCMTMS/USER_ID_CH 

ZENH_CHNG_REAS Types  /SCMTMS/DESCRIPTION 

.INCLUDE Types ZENH_INCL_P_TRQRTSUB 

 
For the Transient Structure define the following attributes: 
 

Component Typing Method Component Type 

ZENH_TRAN_DATE Types /SCMTMS/DATETIME 

.INCLUDE Types ZENH_INCL_T_TRQRTSUB 

 
For the Combined Structure, the Combined Table Type and the Database Table use the 
following names: 
 

Attribute Value/Content Comment 
Combined Structure ZENH_S_TRQRT_SUB The name of the Combined Structure. 

Combined Table Type ZENH_T_TRQRT_SUB The name of the Combined Table Type. 

Database Table ZENH_D_TRQRTS The name of the Database Table that will 
hold the data of the new Subnode. 

 
Finish the Wizard for creating the Subnode with these details by clicking on button 
Complete and continue with step 2. 
 

2) In section 5.4.3 you can find a step-by-step example how to add a new tab strip to the 
User Interface to represent the data of our new Subnode. A few things are of course 
different here compared to the example in section 5.4.3. 
 

http://help.sap.com/


SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

81 

81 

 Similar to the steps described in section 5.4.3 create a new Component Configuration 
for a List UIBB with the details in the table below. Note that this Component 
Configuration is a new object with the customer/partner as the owner (it’s not 
customizing): 
 

Attribute Value Comment 
Component Name FPM_LIST_UIBB_ATS The new configuration shall represent 

a list which will contain data from the 
new BO subnode. 

Configuration ID ZENH_WDCC_TRQSUBNODE_LIST This will be the new configuration to be 
integrated in the Forwarding Order UI. 

 

 In step 4, use Feeder Class /BOFU/CL_FBI_GUIBB_LIST_ATS for the new List UIBB 
configuration. 
 

 In step 5, define the following Feeder Class Parameters for the new List UIBB 
configuration: As Business Object choose /SCMTMS/TRQ and as Node choose the 
new subnode ZENH_TRQRT_SUB that was created before.  
 

 In step 6, place all the attributes of the subnode on the List UIBB and define the 
attributes ZENH_CHNG_DATE and ZENH_CHNG_REAS as input fields while 
keeping the others output only fields. Moreover, add the standard buttons Create and 
Delete to the toolbar of the List UIBB. 
 

 Save the new Component Configuration for the List UIBB 
 

 Add the new List UIBB to the Forwarding Order UI. To do so, navigate to the 
Component Customizing of Component /SCMTMS/WDCC_FWD_ORDER as 
described in step 8. Note that adding your List UIBB to the standard Forwarding 
Order UI and wiring it with this UI is subject to customizing that you create with this 
step. 
 
Add your List UIBB to the Main Page, SECTION_1 of the Forwarding Order UI 
(component /SCMTMS/WDCC_FWD_ORDER). 
 

 As described in steps 9 - 11, create a Wire between the initial screen of the 
Forwarding Order UI and your new Component Configuration for the List UIBB with 
the following details (Again: This Wire is subject to customizing the standard 
Forwarding Order UI) 
 

Attribute Value Comment 
Component FPM_LIST_UIBB_ATS The generic List UIBB provided by FPM, 

i.e. the target component of the wire. 

Configuration 
ID 

ZENH_WDCC_TRQSUBNODE_LIST The example configuration for the new List 
UIBB, i.e. the target configuration of the 
wire. 

Instance ID   

Source 
Component 

FPM_FORM_UIBB_GL2 The source component of the wire. In this 
example it is a Form UIBB. 

Source 
Configuration 
Name 

/SCMTMS/WDCC_TRQ_INITSCREEN The source configuration of the wire. In 
this example, it is the configuration for the 
initial screen form of the Forwarding Order 
UI. 

Source Node 
Association 

ZENH_TRQRT_SUB The association that is defined between 
the wire source and target node. In this 
example: The composition association 
between the Forwarding Order (TRQ) 
Root node and our new subnode 
ZENH_TRQRT_SUB. 

Port Type Collection  

Port Identifier CO  

Connector 
Class 

/BOFU/CL_FBI_CONNECTOR Provides basic functions to connect FPM, 
FBI and BOBF. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

82 

82 

 Save your Component Configuration Customizing and test the new UI Enhancement. 
The following picture shows the result of the described UI Enhancement steps. With 
this UI in place we can now create changes to the data stored in the new subnode. 
You will later on see how these changes get recorded in the context of a Change 
Document Object. 

 
 

 
Picture: The new Subnode represented on the Forwarding Order UI. 

 
3) Start transaction SCDO_NEW to search for and display the Change Document Object 

/SCMTMS/TRQ.  
 

 
Picture: Searching for Change Document Objects. 

 
On the following screen you can then see the list of Database Tables that are assigned to 
this CDO and the properties for each table that determine different aspects of the 
behavior in case of changes. Changes to the content of the assigned tables will be 
recorded and saved in the context of this Change Document Object. 
 

 
Picture: Database Tables assigned to a Change Document Object 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

83 

83 

4) Click on button Insert Row to add the Database Table that represents the data of the 
subnode added in step 1. Add the name ZENH_D_TRQRTS in column Table and set the 
flag Int. Table for the same entry. Finally click on button Save (Ctrl. + S). 
 

5) In the next step you need to (re-) generate the update program for the Change Document 
Object. To do this, click on button Generate change document object (F5). This will first of 
all bring up a popup that allows specifying a few generation parameters. Finally, click on 
button Generate. 

 
Picture: Parameters for generating the update program for the CDO. 

 
After the generation of the update program for the Change Document Object, the system 
displays a summary of the generation process (what has been changed and what 
remained unchanged). When displaying a CDO you can always display the latest 
Generation Information by clicking on button Generation information (F6) (see picture in 
step 3). A part of the Generation Information for this example is shown in the following 
picture: 
 

 
Picture: CDO Generation Information after the generation process. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

84 

84 

6) Now you can test this enhancement use case. Open an existing Forwarding Order, and 
navigate to the new Tab Strip that was added to allow displaying and creating data for the 
new Enhancement Node. 
 

 
Picture: Entering data for the new subnode on the enhanced UI. 

 

 Click on button Create in the toolbar of the List UIBB to create a new entry. Enter a 
Date/Time and a description in the open input fields. 
 

 Save the document. 
 

 Click on button Edit to switch back into Edit Mode. Change the data that you have 
created before and save the document again, i.e. we “enforce” a few changes that 
are recorded in the context of CDO /SCMTMS/CD_TRQ. 

 
7) Display the created Change Documents on the Forwarding Order UI. 

 
If you do not see the Tab Strip Change Documents in the standard UI, first of all make it 

visible by clicking on button Personalize  in the header toolbar of the UI. On the popup 
execute the following steps: Click on button Add and select Assignment Block Change 
Documents from the list. Now click on button OK in the list and finally on button Save. 
 

 
Picture: Adding the Change Document Tab Strip to the UI. 

 
8) The Change Documents incl. the ones for the new Enhancement Node displayed on the 

Forwarding Oder UI looks as follows: 
 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

85 

85 

 
Picture: The Change Documents displayed on the UI 

 
On the Tab Strip Change Documents you can now see all available changes that have 
been made to a Forwarding Order, not only for data stored in standard Database Tables 
but also for Database Tables of Enhancement Nodes. You can see there the node name 
(e.g. ZENH_TRQRT_SUB), the Change Document Number, the name of the changed 
field, old and new value, date and time of the change, etc. 
 

Some further remarks: 
 
As mentioned at the beginning of this example for enhancing an existing Change Document 
Object, this is a real customer enhancement use case. But you should keep in mind that the 
CDOs delivered with the standard are SAP objects, i.e. depending on the setup of your 
system, it might be not allowed to change that kind of objects as you change an SAP object. 
 
Alternatively, you could create your very own customer- or partner-specific Change Document 
Object for a Standard Business Object and assign it all the Database Tables that the standard 
CDO has assigned plus the Database Tables for Enhancement nodes. 
 
But how does the system (better: The BOPF BO) then know which CDO to use at runtime? 
Well, that is a matter of customizing. In the IMG (transaction SPRO) use the following path: 
Cross-Application Components  Reusable Objects and Functions for BOPF Environment. 
 

 
Picture: Assignment of BOPF BO to CDO. 

 
Here you can see the assignment of e.g. the technical BOPF BO /SCMTMS/TRQ to the 
Change Document Object /SCMTMS/CD_TRQ (which we have enhanced in the example 
above) and the Change Document Class /SCMTMS/CL_TRQ_CDO_CB. The mentioned 
class is a good example for implementing your very own implementing class for your own 
CDO. It always should inherit from the super class /SCMTMS/CL_GEN_CDO_CB. 
 
Again it might be not allowed to change that kind of objects in your system as you change an 
SAP object. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

86 

86 

4 Techniques for Enhancing the Business Logic 

4.1 BAdIs 
The Business Add-In (BAdI) concept is SAP’s object-oriented plug-in concept for ABAP. 
BAdIs are a mechanism for planned extensibility. Planned means that the developer of the 
standard software already anticipates that others may want to change or enhance the 
standard behavior at certain points in the application. BAdIs are used to plug in custom 
behavior either in an additive way or by replacing the standard behavior. 
 

4.1.1 Where and how to find BAdIs related to TM 

In the meantime, in SAP TM more than 170 BAdIs are available in all application areas. They 
can be found in the IMG (transaction SPRO) under the following path: 
 
SAP Transportation Management → Transportation Management → Business Add-Ins 
(BAdIs) for Transportation Management. 
 

 
Picture: TM BAdIs in the IMG. 

 
Alternatively, you can use transaction SE18 and use the F4-Help in field BAdI Name to 
search for BAdIs with name /SCMTMS/*. 

4.1.2 Implementing a BAdI 

A BAdI implementation can be started directly from the IMG. As an alternative, transaction 
SE19 can be used to either edit existing enhancement implementations or create new ones. 
Besides the initial screen, the other steps to implement a BAdI with SE19 are the same as the 
procedure starting from the IMG. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

87 

87 

 
Picture: Defining the required Enhancement Implementation. 

 
When starting from the IMG, just click on the second icon next to the BAdI name (see picture 
in section 4.1.1). This allows also the navigation to existing implementations of the 
corresponding BAdI. 
 
1) When starting a BAdI Implementation directly from the IMG, the first step is to specify an 

Enhancement Implementation and a Short Text for it. This Enhancement Implementation 
serves as a container for your implementation steps done in the following. 
 

 
Picture: Defining the required Enhancement Implementation. 

 
2) On the next popup, choose a package where you store your implementation and click on 

the Save button. 
 

 
Picture: Defining the required Enhancement Implementation. 

 
On the following screen you need to enter a BAdI Implementation and an Implementation 
Class. If you started your implementation from the IMG, the correct BAdI Definition is 
already defaulted. Optionally you can also choose another or additional BAdI Definitions 
here that belong to the same Enhancement Spot. In this example you can choose from 
the group of BAdIs that belong to the Enhancement Spot /SCMTMS/TEND which 
contains all Tendering related BAdIs. 
 
 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

88 

88 

 
Picture: Specifying a BAdI Implementation and the implementing Class. 

 
3) A BAdI can provide one or more methods that serve different purposes. So the next step 

is to navigate to the implementing class to get the required methods implemented.  
 

 
Picture: Navigating to the implementing class of a BAdI. 

 
4) Finally create an implementation for desired BAdI methods. Within this step it is helpful to 

display the signature of the method to see what data it receives and what data it is able to 
return as a result. The displayed signature allows direct navigation to the DDIC objects 
used for its parameters. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

89 

89 

 
Picture: Implementing a selected BAdI method. 

 
Finally, after having implemented the required BAdI methods, the implementation needs to be 
activated. This comprises activating the method implementations as well as activating the 
Enhancement Implementation (see also picture in step 3 where the Enhancement 
Implementation is still inactive). To get your implementation up and running, both need to be 
active! 
  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

90 

90 

4.2 Process Controller Strategies 
The Process Controller Framework (PCF) allows the flexible definition of application 
processes. This is accomplished by defining a process as a sequence of methods which 
represent the single process steps. Such a sequence of methods is called a Strategy.  
 
Using the PCF means the definition of an application process as a sequence of methods (a 
Strategy) in customizing by SAP, partners and customers. Pieces of functionality can be 
packed into a method, which can then be included and used in a strategy. Partners and 
Customers can define their own methods and combine them either to completely new 
strategies or they can include their own methods in SAP standard strategies, i.e. they also 
can enhance them with their customer specific functionality. 
 
The following table with predefined services provides an overview of different application 
areas and functionalities within Transportation Management that make use of the Process 
Controller Framework: 
 

Service Description / Purpose 

COPY_CONTR Copy Control 

DDD_DET  Distance and Duration Determination 

GEO_DET Geo Coordinate Determination 

GEO_ROUTE Geo Route Determination 

RG_DYNAMIC Dynamic Routing Guide 

RG_FIX Fixed Routing Guide 

TM_DG TM Dangerous Goods 

TM_GT_GRP Customs Groups 

TM_INVOICE TM Invoicing 

TM_TSPS TM Carrier Selection 

TOR_CHACO TM Change Controller for Changes (Freight Order) 

TOR_CREATE TM Change Controller for Creation (Freight Order) 

TOR_DELETE TM Change Controller for Deletion (Freight Order) 

TOR_DSO TM Direct Shipment Options (Freight Order) 

TOR_SAVE  TM Change Controller for Saving (Freight Order) 

VSR  TM VSR Optimizer 

VSR_INTER  TM VSR Interactive Planning 

… … 

 

4.2.1 Relevant parts of the Process Controller 

The Process Controller Framework comprises the following entities: 
 

 Service: 
A service is the definition of strategies and methods working on the same process. It 
is used to clearly separate the maintenance. 

 

 Method: 
All methods share the same interface of an object for providing parameters and a list 
of mutually independent requests. Some methods comprise functionality themselves, 
whereas others mainly encapsulate existing functionality (like EH&S check within 
RGE). There is a method pool for each process, and each method pool contains all 
methods which the application process requires in order to define its strategies.  

 

 Strategy: 
A strategy serializes a selection of methods from the method pool. It brings them in 
the sequence in which they shall be executed by the Controller.  

 
 
 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

91 

91 

 Parameter: 
Parameters influence the behavior of the respective methods, but do not change the 
sequence in which the methods are executed. The Controller passes them on to each 
method through its interface. A parameter may not only have different values in 
different methods, but also in the same method as part of different strategies, or even 
in the same method of the same strategy as part of different requests.  

 

 Request: 
The requests represent the various business demands (e.g. determination of a best 
route) on an application process. The Controller processes the requests by passing 
them on to the strategy methods through their interfaces. The requests may further 
allow storing possible solutions.  

 

 Application Class: 
The methods in the pool of the Controller are provided by so-called application 
classes. Method execution by the Controller works (dynamically) since the definition 
of a new method includes the name of the providing application class. The results 
produced by a method are either passed on to all succeeding methods with the 
corresponding requests or they are stored externally, if the calling application, but not 
succeeding methods take advantage of these results. 

 

4.2.2 Setting up a Process Controller Strategy 
The configuration of Process Controller Strategies is done in the IMG (Transaction SPRO), 
located under the path shown below: 
 

 
Picture: Configuration of PCF in IMG. 

 
The path in IMG (Transaction SPRO) is: SAP Transportation Management → SCM Basis → 
Process Controller. From here all required steps for defining a strategy can be triggered. 
 
As an example for the configuration of a Process Controller Strategy and the implementation 
of an example method, we create a new strategy for the SAP Standard Service TOR_SAVE. 
In the application area Freight Oder Management you can assign a Save Strategy to a Freight 
Order Type which allows executing follow-on functions when saving Freight Orders. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

92 

92 

1) The first step is to create a new strategy belonging to the service TOR_SAVE. In the 
mentioned IMG path click on Define Strategy and on the following screen on New Entries 
(you could also mark an existing strategy and copy it with a new name). 
 

 
Picture: Creating a new strategy. 

 
2) In the next step, we will define a class that provides a new method to be part of the 

method pool for the used service TOR_SAVE. The example method shall do a Charge 
Calculation for a Freight Order. For the definition of the class and its implementation, 
transaction SE24 is used (for demo purposes, you should use the customer namespace 
and save as local object). 
 

 
Picture: Creating a new class with transaction SE24. 

 
 
  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

93 

93 

3) Within the class we define a method CALCULATE_CHARGES which has to provide 
specific parameters so that the Process Controller Framework can execute it with the 
relevant data. After the parameters have been defined, the implementation of the method 
can be started by double clicking on the methods name in the methods overview. When 
the class implementation is complete, save and activate it. 
 

 
Picture: Defining a method with transaction SE24. 

 

 
Picture: Defining method parameters with transaction SE24. 

 
At runtime, the example method receives Process Controller Requests and executes the 
action CALC_TRANSPORTATION_CHARGES of all instances of the business object 
TOR (e.g. Freight Orders) provided with each request. The example coding for the 
method looks as follows: 

 
METHOD calculate_charges. 

 

  DATA: lo_request            TYPE REF TO /sctm/cl_request, 

        lo_tor_save_request   TYPE REF TO /scmtms/cl_chaco_reque

st, 

        lt_failed_key         TYPE /bobf/t_frw_key, 

        lo_message            TYPE REF TO /bobf/if_frw_message. 

 

  LOOP AT it_request INTO lo_request. 

    lo_tor_save_request = /scmtms/cl_tor_helper_chaco=>cast_requ

est 

    ( lo_request ). 

    CHECK lo_tor_save_request IS BOUND. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

94 

94 

 

****************************************************************

**** calc. the charges for the uncancelled and unfinalized insta

nces 

****************************************************************

*** 

    CALL METHOD 

      lo_tor_save_request->mo_tor_srvmgr->do_action( 

      EXPORTING 

        iv_act_key    = /scmtms/if_tor_c=>sc_action-root- 

                        calc_transportation_charges 

        it_key        = lo_tor_save_request->mt_tor_key_active 

      IMPORTING 

        eo_message    = lo_message 

        et_failed_key = lt_failed_key ). 

 

    APPEND LINES OF lt_failed_key TO lo_tor_save_request-> 

                                     mt_failed_key. 

 

* add messages to change controller request 

    /scmtms/cl_common_helper=>msg_helper_add_mo( 

              EXPORTING 

                io_new_message = lo_message 

              CHANGING 

                co_message     = lo_tor_save_request-

>mo_message ). 

  ENDLOOP. 

 

ENDMETHOD. 

 
4) Now you can assign the new method to the method pool of the TOR_SAVE service. This 

is again done in the IMG. In the IMG path click on Define Methods and on the following 
screen on New Entries. 
 

 
Picture: Assigning the method to the method pool of service TOR_SAVE. 

 
5) Finally, we assign the new method from the method pool to our new strategy which was 

defined in the first step. In the mentioned IMG path click on Assign Methods to a Strategy 
and on the following screen on New Entries. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

95 

95 

 
Picture: Assigning the method from method pool to the strategy. 

 
The example strategy is now ready to be used and allows triggering a Charge Calculation 
when saving e.g. a Freight Order that has this save strategy assigned in its corresponding 
Freight Oder Type. Further methods can be added to the strategy by repeating the described 
steps 3 - 5. Further methods can be added and implemented in the defined class to realize 
additional functionality that shall be executed on save of a Freight Order. These additional 
methods are then assigned to the method pool of the underlying service and to the strategy. 
The execution of the methods is done in the sequence defined in the strategy. 
 
Now the new save strategy can be assigned to a Freight Order Type and is executed 
whenever a Freight Order of this specific type is saved. This assignment is done in the IMG 
under the following path: SAP Transportation Management → Transportation Management → 
Freight Order Management → Freight Order → Define Freight Order Types. 
 

 
Picture: Assigning the new strategy to a Freight Order Type. 

 
With similar steps customers and partners can not only create their very own strategies but 
can also enhance SAP standard strategies to execute additional, customer specific 
functionality. 
 

4.2.3 Using the Process Controller Framework for a new process 
The following section describes an example how to use the Process Controller Framework for 
the implementation of a new process. Running your own Process Controller application 
requires corresponding customizing settings as described in the previous sections as well as 
a technical implementation part. 
 
1) Create a new Process Controller Service in customizing under the path: 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

96 

96 

SAP Transportation Management → SCM Basis → Process Controller → Define Service.  
 
Example: 
 

Service Description 
ZENHDEMO Enhancement Demo Service 

 
2) Define an external and internal request and result structure: The request data must 

contain the information on which process specific strategy shall be executed. An example 
set of the required structures and table types: 
 

Structure Description 
ZENH_S_DEMO_REQUEST_STR Demo Request: Single Request (internal) 

Component Typing 
Method 

Component Type 

TOR_ID Types /SCMTMS/TOR_ID 

TEXT Types /SCMTMS/STRING 

APPROVAL Types BOOLEAN 

APPROVALDATE  Types /SCMTMS/DATETIME 

 

Structure Description 
ZENH_S_DEMO_RESULT Demo Request: Result (external) 

Component Typing 
Method 

Component Type 

ITEM_KEY Types /BOBF/CONF_KEY 

ROOT_KEY Types /BOBF/CONF_KEY 

GRO_WEI_VAL Types /SCMTMS/QUA_GRO_WEI_VAL 

GRO_WEI_UNI Types /SCMTMS/QUA_GRO_WEI_UNI 

 
Also define the corresponding table types: 
 

Table Type Description 
ZENH_T_DEMO_REQUEST_STR Demo Request: Request Table (internal) 

Line Type 
ZENH_S_DEMO_REQUEST_STR 

 

Table Type Description 
ZENH_T_DEMO_RESULT Demo Request: Result Table (external) 

Line Type 
ZENH_S_DEMO_RESULT 

 
Define the internal request and result structure: These structures are used within the 
request objects and could be the same as the external structures in a simple process. 
 

Structure Description 
ZENH_S_DEMO_REQUEST_INT Demo Request: Internal View 

Component Typing 
Method 

Component Type 

.INCLUDE Types ZENH_S_DEMO_REQUEST_STR 

.INCLUDE Types ZENH_S_DEMO_RESULT 

RETURN_CODE Types /SCMTMS/STRING 

 

Structure Description 
ZENH_S_DEMO_REQUEST Demo Request: External View 

Component Typing 
Method 

Component Type 

STRATEGY Types /SCTM/DE_STRATEGY 

REQUESTS Types ZENH_T_DEMO_REQUEST_INT 

 
Also define the corresponding table types: 
 

Table Type Description 
ZENH_T_DEMO_REQUEST_INT Demo Request: Internal View Table 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

97 

97 

Line Type 
ZENH_S_DEMO_REQUEST_INT 

 

Table Type Description 
ZENH_T_DEMO_REQUEST Demo Requests: External View Table 

Line Type 
ZENH_S_DEMO_REQUEST 

 
3) Create a Request Object Class: The request object represents the container for request 

and result data as well as process specific options. It will be filled by the controller and 
passed through the Process Controller Framework from method to method (i.e. it is the 
generic interface between the methods of a strategy). 
 

 Create a class [namespace]CL_[process]_REQUEST which inherits from the super 
class /SCTM/CL_REQUEST. Example: ZENH_CL_DEMO_REQUEST. 
 

 Add public attributes for request and result data as well as (if required) process 
specific options. In example class ZENH_CL_DEMO_REQUEST add the following 
attributes: 
 
Attribute Level Visibility Typing Associated Type 
MV_STRATEGY Instance Attribute Public Type /SCTM/DE_STRATEGY 

MT_REQUESTS Instance Attribute Public Type ZENH_T_DEMO_REQUEST_INT 

MT_RESULTS Instance Attribute Public Type ZENH_T_DEMO_RESULT 

MO_MESSAGE
_HANDLER 

Instance Attribute Public 
 

Type 
Ref To 

/BOBF/IF_FRW_MESSAGE 

 

 Implement a constructor for the class with the following parameters (the method 
CONSTRUCTOR is a public instance method): 
 

Parameter Pass 
Value 

Optional Typing 
Method 

Associated Type 

IV_REQUEST_ID   Type /SCTM/DE_REQUEST_ID 

IV_STRATEGY   Type /SCTM/DE_STRATEGY 

IT_REQUESTS   Type ZENH_T_DEMO_REQUEST_INT 

 
The example coding for the constructor looks as follows: 
 
METHOD constructor. 

* call constructor of super class 

  super->constructor( iv_request_id ). 

 

* assign constructor parameters to member varialbles 

  mv_strategy = iv_strategy. 

  mt_requests = it_requests. 

 

ENDMETHOD. 

 
4) Create a Controller Class: The controller object is responsible for mapping input data to 

internal structures, creating requests, starting the Process Controller Framework and 
finally mapping the results to the external structures. 
 

 Create a class [namespace]CL_[process]_CONTROLLER which inherits from the 
super class /SCTM/CL_CONTROLLER. Example: 
 
ZENH_CL_DEMO_CONTROLLER 
 
 
 
 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

98 

98 

 Create a private instance method CREATE_REQUEST_OBJECTS with the following 
parameters: 
 

Parameter Type Pass 
Value 

Typing 
Method 

Associated Type 

IT_REQUEST_DATA  Importing  Type ZENH_T_DEMO_REQUEST 

ET_STRATEGY_REQUE
STS 

Exporting Yes Type /SCTM/TT_CON_REQUEST_
STRATEGY 

MR_MESSAGE Changing  Type Ref To /BOBF/IF_FRW_MESSAGE 

 
The method is responsible for mapping the input data to internal structures, creating 
requests and sorting them into the Process Controller Framework. 
 
The example coding for method CREATE_REQUEST_OBJECTS looks as follows 
and can be used as a template for your own implementations: 
 
METHOD create_request_objects. 

 

  DATA: lv_message           TYPE string,           "#EC NEEDED 

        lo_request           TYPE REF TO zenh_cl_demo_request, 

        lt_strategy_ids      TYPE /sctm/tt_strategy_id, 

        lv_exists            TYPE boole_d, 

        lv_request_id        TYPE /sctm/de_request_id. 

 

  FIELD-SYMBOLS: <fs_request> TYPE zenh_s_demo_request. 

 

  CLEAR et_strategy_requests. 

 

* Fill complete strategy, method sequence, parameter and detail 

* buffer 

  CLEAR lt_strategy_ids. 

  LOOP AT it_request_data ASSIGNING <fs_request>. 

    INSERT <fs_request>-strategy INTO TABLE lt_strategy_ids. 

  ENDLOOP. 

  fill_strategy_buffer( lt_strategy_ids ). 

 

* Create the requests according to their strategy 

  lv_request_id = 0. 

  LOOP AT it_request_data ASSIGNING <fs_request>. 

    lv_exists = check_strategy( <fs_request>-strategy ). 

    IF lv_exists = abap_false. 

* Given Strategy does not exist; all requests assigned can 

* not be handled 

* MESSAGE e033(/sctm/rg) WITH <fs_request>- 

* request_id INTO lv_message. 

      CONTINUE. 

    ENDIF. 

 

*############################################### 

* Insert your data mapping here if required!!! 

*############################################### 

 

    lv_request_id = lv_request_id + 1. 

    CREATE OBJECT lo_request 

      EXPORTING 

        iv_request_id = lv_request_id 

        iv_strategy   = <fs_request>-strategy 

        it_requests   = <fs_request>-requests. 

 

 

    assign_request_to_strategy( 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

99 

99 

      EXPORTING 

        io_request   = lo_request 

        iv_strategy  = <fs_request>-strategy 

      CHANGING  ct_strategy_requests = et_strategy_requests ). 

 

  ENDLOOP. 

 

ENDMETHOD. 

 

 Create a public instance method EXECUTE_DETERMINATION with the following 
parameters: 
 

Parameter Type Opt. Typing 
Method 

Associated Type 

IT_REQUEST_DATA  Importing  Type ZENH_T_DEMO_REQUEST 

IT_INPUT_METHPAR Importing Yes Type /SCTM/TT_CON_INPUT_METH
PAR 

ET_RESULT Exporting  Type ZENH_T_DEMO_RESULT 

CT_REQUEST Changing Yes Type ZENH_T_DEMO_REQUEST 

CO_MESSAGE_HANDLER Changing Yes Type Ref 
To 

/BOBF/IF_FRW_MESSAGE 

 
The method is responsible Process Controller Framework execution including the 
data mapping. The example coding for method EXECUTE_DETERMINATION looks 
as follows and again can be used as a template: 
 
METHOD execute_determination. 

 

  DATA: lt_strategy_requests TYPE /sctm/tt_con_request_strategy

. 

 

  DATA: lo_request           TYPE REF TO /sctm/cl_request, 

        lo_demo_request      TYPE REF TO zenh_cl_demo_request, 

        lt_bapiret2          TYPE bapirettab. 

 

  FIELD-SYMBOLS: 

     <fs_strategy_request> TYPE /sctm/s_con_request_strategy, 

     <fs_result>           TYPE zenh_s_demo_result. 

 

  CLEAR et_result. 

 

* Transform the supplied request data into request objects 

  CLEAR lt_strategy_requests. 

 

  create_request_objects( 

    EXPORTING it_request_data      = it_request_data 

    IMPORTING et_strategy_requests = lt_strategy_requests 

    CHANGING  mr_message           = co_message_handler ). 

 

* Fill created request objects into controller 

  clear_refill_attributes( it_input_methpar = it_input_methpar 

                 it_strategy_requests = lt_strategy_requests ). 

 

  CLEAR lt_bapiret2. 

  start_perform_requests( IMPORTING et_bapiret2 = lt_bapiret2 )

. 

 

* Get results / messages from every single request 

  LOOP AT mt_strategy_requests ASSIGNING <fs_strategy_request>. 

    LOOP AT <fs_strategy_request>-t_request INTO lo_request. 

      lo_demo_request = zenh_cl_demo_methods=> 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

100 

100 

                        cast_request( lo_request ). 

      CHECK lo_demo_request IS BOUND. 

 

* Take over results 

      LOOP AT lo_demo_request-

>mt_results ASSIGNING <fs_result>. 

        INSERT <fs_result> INTO TABLE et_result. 

      ENDLOOP. 

 

* Take over request specific messages 

    ENDLOOP. 

  ENDLOOP. 

 

ENDMETHOD. 

 
5) Create a Method Pool Class: This class contains all the required functionality for the new 

process, i.e. it contains the implementation of the methods that can be combined to 
strategies. 

 

 Create a class [namespace]CL_[process]_METHODS. Example: 
 
ZENH_CL_DEMO_METHODS 
 

 Create a static public method CAST_REQUEST with the following parameters: 
 

Parameter Type Pass 
Value 

Typing 
Method 

Associated Type 

IO_REQUEST Importing  Type Ref To /SCTM/CL_REQUEST 

RO_REQUEST Returning Yes Type Ref To ZENH_CL_DEMO_REQUEST 

 
The method is responsible for casting the generic request into the process specific 
request. The example coding for method CAST_REQUEST looks as follows and can 
be used as a template: 
 
METHOD cast_request. 

  TRY. 

      ro_request ?= io_request. 

    CATCH cx_sy_move_cast_error. 

      CLEAR ro_request. 

  ENDTRY. 

ENDMETHOD. 

 

 For each of the required steps for the new process create a public instance method 
with the following parameters: 
 

Parameter Type Typing 
Method 

Associated Type 

IO_METHPAR Importing Type Ref To /SCTM/CL_METH_PARAMETER 

IT_REQUEST Importing Type /SCTM/TT_REQUEST 

 
A general template for an implementation of the methods looks as follows: 
 

METHOD your_functionality. 

  DATA: lo_request   TYPE REF TO /sctm/cl_request, 

       lo_[PROCESS]_request  TYPE REF TO [YOUR REQUEST  

                                                 OBJECT]. 

 

  LOOP AT it_request INTO lo_request. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

101 

101 

    lo_[PROCESS]_request = cast_request( lo_request 

). 

    CHECK lo_[PROCESS]_request IS NOT INITIAL. 

 

*################################################# 

*Execute your process here; take request data out 

*of lo_[PROCESS]_request and put in result 

*################################################# 

  ENDLOOP. 

ENDMETHOD. 

 
The process controller strategies can also include methods from other method pool 
classes. This possibility can be used to combine standard method with customer 
specific methods in a strategy where the customer specific methods are implemented 
in a separate, customer method pool class. 
 
Add the following two example methods to class ZENH_CL_DEMO_METHODS with 
the following example code and the parameters as shown above. 
 
METHOD first_enh_method. 

 

  DATA: lo_request       TYPE REF TO /sctm/cl_request, 

        lo_demo_request  TYPE REF TO zenh_cl_demo_request, 

        ls_result        TYPE zenh_s_demo_result. 

 

  BREAK-POINT. 

 

* get the demo request object and execute it 

  LOOP AT it_request INTO lo_request. 

    TRY. 

        lo_demo_request ?= lo_request. 

      CATCH cx_sy_move_cast_error. 

        lo_request->mv_interrupt = abap_true. 

        RETURN. 

    ENDTRY. 

 

    ls_result-root_key    = '2'. 

    ls_result-item_key    = '10'. 

    ls_result-gro_wei_uni = 'PC'. 

    ls_result-gro_wei_val = 100. 

    APPEND ls_result TO lo_demo_request->mt_results. 

 

  ENDLOOP. 

 

  BREAK-POINT. 

 

ENDMETHOD. 

 
METHOD second_enh_method. 

 

  DATA: lo_request       TYPE REF TO /sctm/cl_request, 

        lo_demo_request  TYPE REF TO zenh_cl_demo_request, 

        ls_requests      TYPE zenh_s_demo_request_int. 

 

  FIELD-SYMBOLS: <fs_result> TYPE zenh_s_demo_result. 

 

  BREAK-POINT. 

 

* get the demo request object and execute it 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

102 

102 

  LOOP AT it_request INTO lo_request. 

    TRY. 

        lo_demo_request ?= lo_request. 

      CATCH cx_sy_move_cast_error. 

        lo_request->mv_interrupt = abap_true. 

        RETURN. 

    ENDTRY. 

 

    LOOP AT lo_demo_request->mt_results ASSIGNING <fs_result>. 

*     Use the input data of the request to influence the result 

      READ TABLE lo_demo_request->mt_requests 

            INTO ls_requests INDEX 1. 

      IF ls_requests-approval = abap_true. 

        <fs_result>-gro_wei_val = <fs_result>-gro_wei_val * 10. 

      ENDIF. 

    ENDLOOP. 

 

  ENDLOOP. 

 

  BREAK-POINT. 

 

ENDMETHOD. 

 
6) Configure a strategy in customizing as shown in the previous sections to test the new 

process. The following report allows direct execution of a strategy which is based on the 
new example process created with steps 1 - 5. 
 
*&---------------------------------------------------------------* 

*& Report  ZREP_PCF_DEMO_DIRECT 

*&---------------------------------------------------------------* 

*& This demo report allows direct execution of a demo strategy. 

*&---------------------------------------------------------------* 

REPORT  zrep_pcf_demo_direct. 

* declarations 

DATA: lo_demo_controller TYPE REF TO zenh_cl_demo_controller, 

      ls_req             TYPE zenh_s_demo_request, 

      lt_req             TYPE zenh_t_demo_request, 

      lt_demo_result     TYPE zenh_t_demo_result, 

      ls_data            TYPE zenh_s_demo_request_int, 

      lt_data            TYPE zenh_t_demo_request_int. 

 

FIELD-SYMBOLS: <fs_result> TYPE zenh_s_demo_result. 

 

BREAK-POINT. 

 

* create an instance of the demo controller 

CREATE OBJECT lo_demo_controller. 

 

* define strategy to be executed (prepare in customizing!) 

CLEAR ls_req. 

* PLACE YOUR CONFIGURED TEST STRATEGY HERE! 

ls_req-strategy = 'ZENHDEMO'. 

 

* assemble some example input data for the strategy 

CLEAR lt_data. 

ls_data-tor_id       = '2'. 

ls_data-approval     = abap_false. 

ls_data-approvaldate = sy-datum. 

ls_data-text         = 'Test'. 

INSERT ls_data INTO TABLE lt_data. 

ls_req-requests = lt_data. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

103 

103 

INSERT ls_req INTO TABLE lt_req. 

 

* execute the 

lo_demo_controller->execute_determination( 

                     EXPORTING it_request_data = lt_req 

                     IMPORTING et_result       = lt_demo_result ). 

 

BREAK-POINT. 

 

WRITE: /,'A direct call of the Demo Controller'. 

LOOP AT lt_demo_result ASSIGNING <fs_result>. 

  WRITE: / 'Gross Weight Value',<fs_result>-gro_wei_val. 

ENDLOOP. 

 
Execute the example report with a consistent example strategy and debug it to see how it 
finally works in general. The example code contains implemented break-points at all relevant 
places in the code to see the different aspects of the strategy being executed. 
 

4.2.4 Using Method Parameters 

In case you define additional, similar strategies that only differ in minor parts of a method, you 
can use method parameters to reuse the same method for several strategies with a deviating 
logic. The logic of such a parameter must be implemented in the corresponding standard 
method. 
 
1) In the IMG path for the Process Controller click on Define Parameters for defining method 

parameters. As an example, we define the new parameter ZENH_TEST for service 
TOR_SAVE which shall be a logical value defined by data element BOOLE_D. Save this 
customizing entry. 
 

 
Picture: Defining a new parameter. 

 
2) Now click on Assign Parameters to a Method in the IMG path for assigning the new 

parameter to our example method ZENH_CALC. 
 

 
Picture: Assigning the new parameter to the method. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

104 

104 

3) Parameter ZENH_TEST can now be used by the method ZENH_CALC in a strategy. 
Assume we have multiple strategies defined for service TOR_SAVE and all of them make 
use of example method ZENH_CALC. In the next step, we define that the parameter 
ZENH_TEST of method ZENH_CALC shall have the value True in the context of our 
example strategy ZENH_TORSV. In the IMG path click on Assign Method Parameters to 
a Strategy. 
 

 
Picture: Setting the value for a method parameter for a strategy. 

 
In the implementation of the method the parameter value can be retrieved as follows (the 
example code for reading the parameter is highlighted): 
 
METHOD calculate_charges. 

 

  DATA: lo_request             TYPE REF TO /sctm/cl_request, 

        lo_tor_save_request    TYPE REF TO /scmtms/cl_chaco_request, 

        lt_failed_key          TYPE /bobf/t_frw_key, 

        lo_message             TYPE REF TO /bobf/if_frw_message. 

 

  DATA: lv_zenh_test           TYPE boole_d. 

 

  LOOP AT it_request INTO lo_request. 

    lo_tor_save_request = /scmtms/cl_tor_helper_chaco=> 

                          cast_request( lo_request ). 

    CHECK lo_tor_save_request IS BOUND. 

 

******************************************************************** 

* read the parameters assigned to the method and take over the value 

* depending on the parameter type you must use method 

* - io_methpar->get_bool_par 

* - io_methpar->get_float_par 

* - io_methpar->get_int_par 

* - io_methpar->get_string_par 

* to get the corresponding parameter values returned 

******************************************************************** 

    lv_zenh_test = io_methpar->get_bool_par( 

      iv_request_id = lo_tor_save_request->mv_id 

      iv_method     = 'ZENH_CALC' 

      iv_param      = 'ZENH_TEST' ). 

 

******************************************************************** 

* use the parameter to define/change the methods logic 

******************************************************************** 

    IF lv_zenh_test = abap_true. 

      … 

    ENDIF. 
  … 
  ENDLOOP. 

ENDMETHOD. 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

105 

105 

4.3 Conditions 
In TM conditions can be defined and configured to influence the business logic. Such 
conditions are used as filters and for automated decision making in many areas of the TM 
application. 
 
Conditions use a set of input values which can e.g. come from attributes of the TM Business 
Objects. These input values are then mapped onto corresponding output values. The output 
of a condition can be a simple Boolean which indicates to select a business object instance 
(yes/no), it can be a simple value like an ID of a business partner or it can be a set of output 
values which are determined by the condition based on the input values. 
 
Example: In the customizing for a Forwarding Order Type, you can place a condition that will 
determine the Freight Unit Building Rule that shall be used when processing a Forwarding 
Order of this type. The condition can e.g. determine a Freight Unit Building Rule to be used 
based on source and destination location provided in the Forwarding Order. In the same 
customizing, you can define a similar condition that determines the sales organization to be 
used with the Forwarding Order. 
 

4.3.1 Customizing: Condition Types and Data Access Definitions 

A condition type defines possible input values as well as the output of conditions of that type. 
The input values are defined by so called data access definitions. 
 
Data access definitions define how the content of the input values is read during runtime. This 
can e.g. be a generic access to a defined BO, BO node and BO node attribute (can be 
configured in the data access definition) or a specific class method that will provide the data 
(implementation required). A condition type gets assigned one or more such data access 
definitions. When creating a condition of this type, the input can be build up from these 
assigned data access definitions. 
 
The output defined with a condition type can be single values like e.g. a simple Boolean or a 
Product ID. It can also be a complete structure with multiple attributes as the output result. 
 
Example: 
  

 Condition type /SCMTMS/FUBR allows defining conditions to determine Freight Unit 
Building Rules for Forwarding Orders. The data access definitions assigned to it is 
/SCMTMS/TRQ (Forwarding Order Type) and /SCMTMS/TRQ_ITEM_PRD (Product 
ID in the Forwarding Order Item). The output of this condition type is defined to be the 
Freight Unit Building Rule ID. 
 

 Conditions of this type can now be defined to use either the Forwarding Order Type 
or the Product IDs of the Forwarding Order Items or even both to determine a Freight 
Unit Building Rule. 

 

 The condition can be assigned to a Forwarding Order Type in customizing. Whenever 
creating a Forwarding Order of this type, condition will then determine a required 
Freight Unit Building Rule. 

 
SAP TM delivers a set of predefined condition types and data access definitions. Customers 
and partners can also define their own condition types and data access definitions in the 
customizing if required. You can find the customizing for condition types and data access 
definitions via transaction SPRO under the following path: SAP Transportation Management 
→ Transportation Management → Basic Functions → Conditions. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

106 

106 

 
Picture: Conditions Customizing. 

 
Besides the Condition Types and Data Access Definitions delivered with SAP TM, customers 
and partners can define their own corresponding entities. 

4.3.2 Creating Data Access Definitions 

Data Access Definitions can be created using different approaches. 
 
1) Defining a Data Access Definition by providing required Business Object data to access a 

single attribute of a given node. In the customizing follow the path SAP Transportation 
Management → Transportation Management → Basic Functions → Conditions → Data 
Access Definition. 

 

 Click on button New Entries. 
 

 Define a name and a description for the new Data Access Definition and provide the 
required details in section BO Data. Example: A Data Access Definition that returns 
the attribute TOR_CAT from the Root node of Business Object /SCMTMS/TOR (used 
for Freight Order, Freight Unit and others). 
 

Field Content Comment 
Data Access Def. ZENH_TOR_CAT The name of the new Data Access 

Definition. 

Description Enhancement DAD for TOR 
Category 

A description of the new Data Access 
Definition. 

Data Element for F4 help /SCMTMS/TOR_CATEGORY  

Name of BO /SCMTMS/TOR Business Object Name 

Name of BO Node ROOT The node of the Business Object where 
the attribute is read from. 

BO Node Field Name TOR_CAT The name of the node attribute on the 
provided node. 

Filter 1: BO Field Name CREATED_BY An additional filter attribute that has to 
be available on the same node. 

Filter 1: Field Value POLCH The value for the filter. 

 
The Data Access Definition in this example realizes a generic access to the attribute 
TOR_CAT on the Root node of business object /SCMTMS/TOR with a corresponding 
data element assigned that provides a suitable F4 Help during further usage of the Data 
Access Definition. As indicated in the example, you can also define up to two further 
attributes of the same specified node to serve as filters (example: only return the value for 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

107 

107 

attribute TOR_CAT if attribute CREATED_BY = “POLCH”). This type of Data Access 
Definition does not require further implementation and can be used right away. 
 

 
Picture: Creating a new Data Access Definition. 

 
2) Define a Data Access Definition by defining a Data Crawler Profile. The Data Crawler is a 

tool that allows to define a (cross BO) navigation path from a source node to a target 
node and to retrieve required data from the included nodes. Again, this type of Data 
Access Definition does not require further implementation and can be used right away. 

 
The Data Crawler Profile information can be maintained in the IMG via path SAP 
Transportation Management → Transportation Management → Basic Functions → 
Conditions → Define Data Crawler Profile (in older SAP TM releases to be maintained via 
transaction SM34 view cluster /SCMTMS/VC_DCPRF). 
 

 
Picture: Maintaining View Cluster for Data Crawler Profiles. 

 

 Click on button New Entries (see picture above) to create the following example Data 
Crawler Profile. 
 
 
 
 
 
 
 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

108 

108 

 
Picture: Example Data Crawler Profile. 

 

 The example Data Crawler Profile shall simply allow navigation from the Forwarding 
Order Root node to the Item Node. Enter the following data: 

 

Field Content Comment 

Profile ID ZENH_TRA_ITEM The name of the new Data Crawler 
Profile. 

BO Name /SCMTMS/TRQ Name of the BO where the profile starts 
reading data → Source BO. 

Node Name ROOT Name of the BO node where the profile 
starts reading data → Source BO node. 

Fill Data (space) Optional. If this flag is set, the data of the 
defined source node will be read during 
execution of the profile. 

 

 
Picture: An example path step of a Data Crawler Profile. 

 

 In the dialog structure (see picture above) double click on Path Steps to add further 
target nodes that shall be navigated to. For the example enter the following path step: 

 

Field Content Comment 

Step ID 010 The number of the step. A Data Crawler 
Profile can have multiple steps that are 
combined to a path through the involved 
BOs and corresponding nodes. 

Prev. Step ID (space) Allows specifying the previous step in the 
path after which the new step shall be 
executed. 

BO Name /SCMTMS/TRQ The name of the Business Object  

Source Node ROOT Predefined by the source node defined in 
the profile header. 

Association ITEM_MAIN The association to be used for navigating to 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

109 

109 

the Item node. 

Target Node ITEM Predefined by the association and its target 
node. 

Fill Data (flag is set) In case the flag is set, the data of the target 
node instances will be read. Otherwise if 
the flag is not set, it just returns source and 
target node keys that are used for potential 
navigation to further nodes in the node 
hierarchy, i.e. further path steps. 

 
Using the Data Crawler in your own coding can be done by creating an instance of class 
/SCMTMS/CL_DATA_CRAWLER. The class provides the implementation of all methods 
required for using Data Crawler Profiles. The following example report shows how to read 
data with the Data Crawler Profile defined above: 
 
*&---------------------------------------------------------------* 

*& Report  ZREP_DC_TEST 

*&---------------------------------------------------------------* 

*& This report demonstrates the usage of a Data Crawler Profile to 

*& read and retrieve data from a business object. 

*&---------------------------------------------------------------* 

REPORT  zrep_dc_test. 

 

DATA: ls_dc_prof_id  TYPE /scmtms/dc_profile_id, 

      lt_dc_prof_id  TYPE /scmtms/t_dc_profile_id, 

      ls_bo_inst_key TYPE /bobf/s_frw_key, 

      lt_bo_inst_key TYPE /bobf/t_frw_key, 

      lo_crawler     TYPE REF TO /scmtms/cl_data_crawler, 

      lt_dc_data     TYPE /scmtms/cl_data_crawler=>tt_data, 

      lo_message     TYPE REF TO /bobf/if_frw_message. 

 

BREAK-POINT. 

 

CLEAR: ls_dc_prof_id, 

       lt_dc_prof_id. 

 

* Secify the Data Crawler Profile to be used 

ls_dc_prof_id = 'ZENH_TRQ_ITEM'. 

APPEND ls_dc_prof_id TO lt_dc_prof_id. 

 

* Specify the key of an example BO instance (here: a TRQ instance) 

ls_bo_inst_key-key = '4D08C2BEC9015E16E10000000A421A6A'. 

APPEND ls_bo_inst_key TO lt_bo_inst_key. 

 

* Create an instance of the Data Crawler class 

CREATE OBJECT lo_crawler 

  EXPORTING 

    it_profile_id = lt_dc_prof_id. 

 

* Call the Data Crawler with the given profile and BO instance 

CALL METHOD lo_crawler->get_data 

  EXPORTING 

    it_profile_id = lt_dc_prof_id 

    it_key        = lt_bo_inst_key 

  IMPORTING 

    et_data       = lt_dc_data 

    eo_message    = lo_message. 

 

* The resulting data can be found in LT_DC_DATA 

 

BREAK-POINT. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

110 

110 

 
Picture: A Data Access Definition with a Data Crawler Profile as data source. 

 
The Data Access Definition example in the following table makes use of the Data Crawler 
Profile ZENH_TRQ_ITEM defined above to read the Product ID from the items of a given 
Forwarding Order. 
 

Field Content Comment 

Data Access Def. ZENH_TRQ_ITEM_PRD The name of the Data Access 
Definition. 

Description Enhancement DAD Description for the Data Access 
Definition. 

Data Element for 
F4 helps 

/SCMTMS/PRODUCT_ID The data element that provides a 
suitable F4 help for the field to be 
returned. 

Profile ID ZENH_TRQ_ITEM The Data Crawler Profile to be used. 

Step ID 10 Defines that step in the path of the 
profile that provides the content for 
the field to be returned. 

Field Name PRODUCT_ID The field/attribute to be returned by 
the Data Access definition. 

 
3) Realizing a Data Access Definition by implementing a Determination Class. While the first 

two options allow defining Data Access Definitions via configuration, this option requires 
creating a new class that implements interface /SCMTMS/IF_COND_DETERM_CLASS. 
The only method defined in this interface is EXTRACT_DATA_MASS. 
 
Class /SCMTMS/CL_COND_CAPA_CHECK represents a nice example for an 
implementation of such a determination class. Within method EXTRACT_DATA_MASS, 
the capacity utilization of provided Freight Orders is read and compared with the 
maximum capacity. The result returned by the method is a statement whether the 
capacity is sufficient (returned result = “S”) or is the capacity is overloaded (returned 
result = “O”). Using Determination Classes as the data source for a Data Access 
Definition especially makes sense when data needs to be read and analyzed to return an 
aggregated result rather than the data itself. 
 
The following example implementation can e.g. be used to define a Data Access 
Definition that realizes the same functionality as the Data Crawler Profile example before. 
Create your own Determination Class ZCL_ENH_DET_CLASS that implements method 
EXTRACT_DATA_MASS as follows: 
 
 
 
METHOD /scmtms/if_cond_determ_class~extract_data_mass. 

 

  FIELD-SYMBOLS: <fs_data> TYPE any. 

 

  DATA: lo_srvmgr      TYPE REF TO /bobf/if_tra_service_manager, 

        lo_message     TYPE REF TO /bobf/if_frw_message, 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

111 

111 

        ls_item_data   TYPE /scmtms/s_trq_item_k, 

        lt_item_data   TYPE /scmtms/t_trq_item_k, 

        ls_dobo_link   TYPE /scmtms/s_cond_do_data_k, 

        ls_key         TYPE /bobf/s_frw_key, 

        ls_key_data    TYPE /scmtms/s_bokey_dokey_data. 

 

  BREAK-POINT. 

 

* Get a service manager to access the TRQ BO 

  lo_srvmgr = /bobf/cl_tra_serv_mgr_factory=> 

              get_service_manager( /scmtms/if_trq_c=>sc_bo_key ). 

 

* Retrieve the Item Data for a given TRQ key 

* via association ITEM_MAIN 

  lo_srvmgr->retrieve_by_association( 

    EXPORTING 

      iv_node_key    = /scmtms/if_trq_c=>sc_node-root 

      it_key         = it_boinst_key 

      iv_association = /scmtms/if_trq_c=>sc_association-root- 

                       item_main 

      iv_fill_data   = abap_true 

    IMPORTING 

      eo_message     =  lo_message 

      et_data        =  lt_item_data ). 

 

* Build up the result data from the read bo data 

  LOOP AT it_boinst_key INTO ls_key. 

    UNASSIGN <fs_data>. 

    CREATE DATA ls_key_data-data TYPE /scmtms/product_id. 

    ASSIGN ls_key_data-data->* TO <fs_data>. 

 

    LOOP AT it_dobo_link INTO ls_dobo_link. 

      ls_key_data-bokey = ls_key-key. 

      ls_key_data-dokey = ls_dobo_link-dobj_id. 

 

      " Example: Take over the first Product ID found 

      READ TABLE lt_item_data INTO ls_item_data INDEX 1. 

      IF sy-subrc = 0. 

        " Return the BO key, the link between Data Object 

        " and the BO as well as the resulting Prodcut ID 

        ls_key_data-bokey = ls_key-key. 

        ls_key_data-dokey = ls_dobo_link-dobj_id. 

        <fs_data>         = ls_item_data-product_id. 

      ENDIF. 

 

      " Insert result data to the return patameter 

      INSERT ls_key_data INTO TABLE et_bokey_dokey_data. 

 

    ENDLOOP. 

 

  ENDLOOP. 

 

  BREAK-POINT. 

 

ENDMETHOD. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

112 

112 

 
Picture: A Data Access Definition with a Determination Class as data source. 

 

Field Content Comment 

Data Access Def. ZENH_TRQ_ITEM_PRD2 The name of the Data Access 
Definition. 

Description Enhancement DAD Description for the Data Access 
Definition. 

Data Element for 
F4 helps 

/SCMTMS/PRODUCT_ID The data element that provides a 
suitable F4 help for the field to be 
returned. 

Determination 
Class 

ZCL_ENH_DET_CLASS The name of the Determination 
Class. 

Class Attribute (optional)  

 

4.3.3 Creating Condition Types 
Just like Data Access definitions, customers and partners can define new Condition types. In 
the customizing follow the path SAP Transportation Management → Transportation 
Management → Basic Functions → Conditions → Define Condition Types. 

 

 Click on button New Entries. 
 

 Define a name and a description for the new Condition Type and provide the required 
details in section Maintenance View for Condition Types. Example: The standard 
Condition Type /SCMTMS/FUBR that returns a Freight Unit Building Rule ID. 
Conditions of this type use the Forwarding Order Type and Forwarding Order Item 
Product (see assignment of Data Access Definitions to this type in customizing). 
 

 
Picture: A (standard) Condition Type. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

113 

113 

Field Content Comment 

Condition Type /SCMTMS/FUBR The name of the new Data 
Access Definition. 

Description FUB Rule 
Determination Cond. 

A description of the new Data 
Access Definition. 

Only one condition 
allowed for this condition 
type 

[space] If this flag is set, only one 
single condition can be 
defined with this type. 

Result is a structure [space] If this flag is set, the 
condition is intended to 
return a result structure 
instead of a single attribute. 
In this case enter the 
structure name in field Result 
DDIC Type. 

Result DDIC Type /SCMTMS/FUBR_ID The DDIC type for the result 
of a condition of this type. 

Business Object /SCMTMS/TRQ The Business Object node 
whose keys are used as 
input for the condition (check 
for consistency?). 

BO Node Name ITEM 

 

4.3.4 Assign Data Access Definitions to Condition Types 

In this step, Data Access Definitions are assigned to a Condition type. When defining a 
condition of a given type, the assigned Data Access Definitions represent the pool of possible 
input data for the condition. 
 
In the customizing follow the path SAP Transportation Management → Transportation 
Management → Basic Functions → Conditions → Assign Condition Type to Data Access 
Definition. 
 

 Click on button New Entries. 

 Define the Condition Type and the Data Access Definition on the following screen. 

 Repeat this for all Data Access Definitions to be assigned to the Condition type. 

 Save your data. 
 
Example: The standard Condition Type /SCMTMS/FUBR has assigned two Data Access 
Definitions which serve as input and can be used for the definition of conditions of this type: 
 

Condition Type Data Access Definition Comment 

/SCMTMS/FUBR /SCMTMS/TRQ_TYPE The type of the Forwarding Order. 

/SCMTMS/FUBR /SCMTMS/TRQ_ITEM_PRD The Forwarding Order Item Product ID. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

114 

114 

 
Picture: Assigning Data Access Definitions to a Condition Type. 

 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

115 

115 

4.3.5 Creating Conditions 

Prerequisite for defining conditions is the proper setup and availability of the before 
mentioned condition types and data access definitions. The following examples describe how 
to set up a condition based on the standard condition types and data access definitions 
delivered with TM 9.0. The transactions for creating and editing conditions can be found in the 
user menu under the following path: Application Administration → General Settings → 
Conditions.  
 
1) Choose Create Condition to start the creation of a new condition. 

 
2) On the initial screen, enter the Condition Type, a description, the condition type and an 

origin of expression that shall be the basis for the new condition. 
 

 
Picture: Enter condition type on the initial screen. 

 
Example values to enter in this step: 
 

Field Value 

Condition DEMO_FUBR_COND 

Description Demo Condition for FUBR determination 

Condition Type /SCMTMS/FUBR 

Origin of Condition Condition based on BRFplus Decision Table 

 
For our example, we choose Condition based on BRFplus Decision Table as the origin 
of condition which represents the default. In general, you can choose from three options: 
 

 Direct Business Object Access: 
The system directly takes over the input values of a condition as the output values. 

 

 Condition based on BRFplus Decision Table: 
The system maps a set of input values onto corresponding output values. This 
mapping is defined in a decision table (default). 
 

 Condition based on BRFplus Expression: 
The system decides based on a logical expression what the result of a condition shall 
be. The data read by the data access definition is combined in a logical expression 
that then returns either Yes (logical expression is true) or No (logical expression is 
false). 

 
  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

116 

116 

 
Picture: Entering the first condition details. 

 

 
Picture: Specifying the relevant Data Access Definitions. 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

117 

117 

3) The next step is to define the input values that shall be used by the new condition. Click 
on button Data Access Definition (see picture above) to define a subset of data access 
definitions allowed for the chosen condition type that shall be used as input for the new 
condition. You can choose any data access definition that was assigned to the used 
condition type in customizing before. Example: 
 

Data Access Definition for Condition Comment 

/SCMTMS/TRQ_TYPE Forwarding Order Type 

/SCMTMS/TRQ_ITEM_PRD Forwarding Order Item - Product ID 

 
On the same screen you can also adjust and add further details for the currently selected 
data access definition if required. Click on button Back to return to the main screen. 

 
4) Back on the main screen enter the decision table entries for the condition. With this 

decision table, input values are mapped onto corresponding output values of the 
condition. Example: 

 

Input values as per the used data access definitions. Output values as defined 
in the used condition type. 

Comparison 
Operation 

Type Comparison 
Operation 

Product FUB Rule 

Is equal to FWO Contains String DIT-PROD-10-1 A-FUBR-01 

Is equal to FWO Contains String DIT-PROD-10-2 A-FUBR-02 

Is equal to TRO1 Contains String DIT-PROD-10-3 A-FUBR-04 

… … … … … 

 

 
Picture: Maintaining the content of the decision table. 

 
5) Save the defined condition. The condition is now ready to be used. The described 

example condition can be used in the customizing for Forwarding Order Types to define 
its way how to determine a Freight Unit Building. The Freight Unit building rule is 
determined when creating a Forwarding Order of a corresponding type (note: in case you 
enter a Freight Unit Building Rule on the Forwarding Order UI, the system is implemented 
in a way that this will override the rule determined by the condition). 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

118 

118 

 
Picture: The condition in customizing for Forwarding Order Type. 

 

4.3.6 Simulating Conditions 
Before using a newly created condition the function that it is supposed to realize can be 
simulated. This allows verifying the expected functional correctness in advance of using the 
condition in a production environment. This can help to prevent inconsistencies and unwanted 
results. As per TM 9.0, the simulation of conditions can be triggered right away from the 
Conditions User Interface integrated in the TM User Interface. 
 
1) The simulation can be started on the main screen of the Conditions User Interface. Click 

on button Start Simulation. 
 

 
Picture: Starting the simulation on the Condition Main Screen. 

 
2) On the next screen just click on button Continue (usually, the only option to define is 

whether the last active version of the condition or a version as of a specific Date/Time). 
Then you can enter example input values for the condition. Choose e.g. a combination of 
values that has an entry in the related decision table. Then click on button Execute to 
start the simulation. 

 

 
Picture: Simulation of a condition. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

119 

119 

3) On the next screen you can see the result of the simulation (in the example a 
corresponding Freight Unit Building Rule was found for the entered Item Product and 
Forwarding Order Type). 
 

 
Picture: Condition Simulation result. 

 
Alternatively you can also use the BRF+ Framework directly to maintain and simulate your 
conditions. 
 
1) Start transaction BRF+. The Business Rule Framework Plus (BRF+) is the technical 

framework that is used within Transportation Management to handle conditions. 
 

 
Picture: The BRF+ User Interface. 

 
2) Click on tab Repository and in selection box Show choose My Applications. You can find 

here a so called BRF+ application that contains the condition you created as a function. 
Navigate to your condition (Example: DEMO_FUBR_COND) in the Functions sub tree 
and double click on it. If the selected function is in status Active and already signed with a 
green traffic light, the condition is already active and can be used. 

 

3) On the right side of the screen you can now see the details of the condition as 
represented in the BRF+ framework. If the selected function does not yet show status 
Active, you can click on button Activate to activate the condition. After activating, the 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

120 

120 

condition should be signed with a green traffic light. The active condition is now ready to 
be simulated or executed. 
 

4) Click on button Start Simulation to get to the simulation screen. On the simulation screen 
you can enter a set of input values that will be used for the simulation run. The fields to be 
entered correspond to the input fields defined in the condition via its assigned data 
access definitions. 

 
The following screens for the simulation are exactly those that have been shown already 
above, i.e. the SAP Transportation Management User Interface just simply integrated the 
BRF+ User Interface parts for simulation of conditions. 

 

4.3.7 Implementing a condition call in your coding 
To see the execution of a condition, you can set a breakpoint in method 
PROC_CONDITIONS of class /SCMTMS/CL_COND_OL. This class provides a variety of 
methods that help to implement condition calls. Especially, it helps to abstract from the more 
complex coding which is required to call BRF+ (Business Rules Framework +) which is used 
for the realization of conditions in SAP TM.  
 
The following example report implements the invocation of a condition for a given business 
object instance. It calls the example condition created in section 4.3.5, i.e. the determination 
of a Freight Unit Building rule for a given Forwarding Order instance. The condition must be 
assigned to the Forwarding Order Type as also described in section 4.3.5. 
 
*&------------------------------------------------------------------* 

*& Report  ZREP_COND_TEST 

*&------------------------------------------------------------------* 

*& This report demonstrates the usage of class /SCMTMS/CL_COND_OL, 

*& method PROC_CONDITIONS to execute conditions and receive back a 

*& result. 

*&------------------------------------------------------------------* 

REPORT  zrep_cond_test. 

 

DATA: ls_bo_inst_key       TYPE /bobf/s_frw_key, 

      lt_bo_inst_key       TYPE /bobf/t_frw_key, 

      ls_condition_id      TYPE /scmtms/s_condition_id, 

      lt_condition_id      TYPE /scmtms/t_condition_id, 

      co_message           TYPE REF TO /bobf/if_frw_message, 

      lt_cond_result       TYPE /scmtms/t_boid_cond_result, 

      lt_cond_result_all   TYPE /scmtms/t_boid_cond_result. 

 

CLEAR: ls_bo_inst_key, 

       ls_bo_inst_key, 

       ls_condition_id, 

       lt_condition_id. 

 

BREAK-POINT. 

 

* Specify the key of an example BO instance (here: a TRQ instance) 

ls_bo_inst_key-key = '4D08C62BC9015E16E10000000A421A6A'. 

APPEND ls_bo_inst_key TO lt_bo_inst_key. 

 

* Specify the condition to be executed 

ls_condition_id-condition_id = 'DEMO_FUBR_COND'. 

APPEND ls_condition_id TO lt_condition_id. 

 

* Call method PROC_CONDITIONS 

CALL METHOD /scmtms/cl_cond_ol=>proc_conditions 

  EXPORTING 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

121 

121 

    it_boinst_key            = lt_bo_inst_key 

    it_cond_id               = lt_condition_id 

    iv_do_not_return_no_hits = abap_true 

  IMPORTING 

    et_bokey_cond_result     = lt_cond_result 

  CHANGING 

    co_message               = co_message. 

 

* Collect all results from condition for later processing 

INSERT LINES OF lt_cond_result INTO TABLE lt_cond_result_all. 

 

BREAK-POINT. 

 
The report also allows debugging the processing of a condition to learn more details on how it 
is actually executed during runtime. During execution, jump into method PROC_CONDITION 
and set further breakpoints to see the different parts of the condition processing. For this, the 
method calls further methods defined in class /SCMTMS/CL_COND_OL. 
  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

122 

122 

4.4 Change Controller 
The Change Controller is a framework used in the context of SAP TM to dynamically react on 
changes that are done on Business Documents like Freight Orders, Freight Bookings, Freight 
Units or Service Orders. They are all based on the technical BO /SCMTMS/TOR. The Change 
Controller allows detecting changes on these Business Documents (Objects) and defining 
how the system should react on these changes. It triggers functionality that reacts on the 
changes, e.g. executing updates or changes on other related Business Documents (Objects) 
or checking tolerances for changed data. 
 
You will see in the following sections that the change controller uses Process Controller 
Strategies (section 4.2) as well as Conditions (section 4.3) to realize its functionality. So it is 
recommended to get familiar with these two sections in advance before going on with this 
section. 
 
The following sections describe how the Change Controller works from a technical 
perspective along with examples how to set it up. Moreover an enhancement concept is 
described that can be used to react on customer / partner specific changes in the mentioned 
BO /SCMTMS/TOR. 
 

4.4.1 Basic Concept & technical aspects 

The basic concept of the Change Controller is described in the following steps: 
 
1) An instance of BO /SCMTMS/TOR (as mentioned, this can represent a Freight Order, 

Freight Booking, Freight Unit or Service Order) is changed, i.e. attributes of its so called 
triggering nodes are created, updated or deleted. The Change controller is able to react 
on changes in the data of these nodes. The triggering nodes are: 
 

 ROOT 

 ITEM_TR 

 STOP 

 EXECUTIONINFORMATION 

 HANDLING_CODE 

 CC_CHG_TR 
 

2) The Determination DET_CALL_CHACO is called which is assigned to the Root Node of 
BO /SCMTMS/TOR. The following table shows the Triggering Conditions for the 
mentioned nodes (transactional point in time will be BEFORE_SAVE). 
 

Node Create Update Delete 

ROOT No Yes No 

ITEM_TR Yes Yes No 

STOP Yes Yes Yes 

EXECUTIONINFORMATION Yes Yes No 

HANDLING_CODE Yes Yes Yes 

CC_CHG_TR Yes Yes No 

 
3) Get the /SCMTMS/TOR nodes that triggered the changes and identify the discrete 

changes. 
 

4) The Determination DET_TRIGGER_STRATEGIES is executed to determine the Change 
Strategy to be executed. Such a Change Strategy is finally a Process Controller Strategy 
(see section 4.2) that gets executed. 

 
The found Change Strategy can be configured to be executed synchronously or 
asynchronously. It contains the execution of the functionality that represents the required 
reaction on changes in Business Documents based on the technical BO /SCMTMS/TOR. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

123 

123 

5) In case of synchronous configuration it will be directly executed on triggering condition 
and transactional point in time BEFORE_SAVE. 

 
6) In case of an asynchronous configuration, the Change Strategy is first of all registered for 

asynchronous execution on triggering condition and transactional point in time 
BEFORE_SAVE. The actual execution is then done via corresponding function modules 
that are called in update-task. Note: In earlier SAP TM releases before SAP TM 9.0 they 
were executed on triggering condition and transactional point in time AFTER_COMMIT. 
This was replaced due to performance issues.  

4.4.2 Customizing settings for the Change Controller 

For each of the mentioned Business Documents you can maintain corresponding Document 
Type in transaction SPRO, path SAP Transportation Management  Transportation 
Management  Freight Order Management  Freight Order (Freight Booking, Transportation 
Unit or Service Order). Freight Unit can be found under path SAP Transportation 
Management  Transportation Management  Planning  Freight Unit. In all mentioned 
document types you can define the following settings: 
 

1. Default Change Strategy: 
This change strategy defines the default process controller strategy (“change 
controller strategy”) that the change controller will use to react on changes to the 
business document. The default strategy is used in case no strategy determination 

condition is assigned to the business document type. It is also used in case an assigned 
strategy determination condition could not determine a suitable change controller strategy 
at runtime.  
 

 Change Strategy Determination Condition: 
This condition specifies the condition that the system will use for determining a 
change controller strategy at runtime. If you need to use different change controller 
strategies depending on specific situations you can set up this condition for 
determining the correct change controller strategy at runtime. The condition type of 
this condition must be /SCMTMS/CC_TOR_STRAT. 

 

 Quantity Tolerance Condition: 
Here you can define a condition for determining quantity tolerances in the case of a 
quantity change. If you change a quantity the condition is used to dynamically check 
whether a quantity change can be tolerated. In case no condition is maintained, the 
standard logic will just classify any quantity change as a relevant quantity change. 
The condition type of this condition must be /SCMTMS/CC_QUAN_TOL. 
 
The result of this condition can be: 

- “”   = No Relevant Quantity Change Determined. 
- “X”  = Relevant Quantity Change Determined. 

 
This result is then further provided to the change controller condition via data access 
definition /SCMTMS/TOR_QUAN_UPD. The change controller condition can then 
decide which strategy to execute to react on a quantity change in case it is a relevant 
change outside the defined tolerances. 
 
Example: Assume you change the quantity of a Forwarding Order for which a Freight 
Unit has been created before from 2.500 kg to 2.510 kg (Remember: Freight Units 
are instances of Business Object /SCMTMS/TOR). This quantity change in the 
Forwarding Order will trigger the change controller strategy assigned to the Freight 
Unit Type of the related Freight Unit. 
 

- In case no quantity tolerance condition is maintained in the Freight Unit Type, 
the quantity change will be considered as relevant (standard logic) and the 
Freight Unit weight is adjusted also to 2.510 kg. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

124 

124 

- In case there is a quantity tolerance condition maintained in the Freight Unit 
Type, the tolerance will be determined at runtime according to the decision 
table defined for the condition. 

 
The following standard Data Access Definitions are available for defining a quantity 
tolerance condition: 
 

- /SCMTMS/TORQTYCHGWEI: 
Provides the quantity change of weight in kg. 

 
- /SCMTMS/TORQTYCHGVOL: 

Provides the quantity change of volume in m3. 

 
- /SCMTMS/TORQTYCHGPCS: 

Provides the quantity change of pieces. 

 
- /SCMTMS/TOR_UTIL_CHG: 

Provides the maximum change of the utilization rate (not feasible for freight 
units). 

 
These standard Data Access Definitions return negative values in case of quantity 
decreases and positive values in case of quantity increases. Using data access 

definition /SCMTMS/TORQTYCHGWEI, the condition can be e.g. set up to consider a 
quantity change of only 10 kg as not relevant. In the example mentioned above, the 
Freight unit would then keep its original weight of 2.500 kg. 

 

 Date Tolerance Condition: 
This condition can be used for determining date/time tolerances in case of a date/time 
change. In case no condition is maintained, the standard logic will just classify any 
date/time change as critical changes. The condition type of this condition must be 
/SCMTMS/CC_DATE_TOL. The result of a maintained Date Tolerance Condition can 
be one of the following values: 
 

- “ ” = No Change. 
- “1” = Critical Change. 
- “2” = Non-critical Change. 

 
Similar to the Quantity Tolerance Condition, the result is then further provided to the 
change controller condition via data access definition /SCMTMS/TOR_DATE_UPD. 
The change controller condition can then decide which strategy to execute to react on 
a date/time change in case it is a critical change outside the defined tolerances. 

 

4.4.3 Example Change Controller settings 
The first example describes a simple demo setup for using the change controller to react on 
changes done for Freight Orders of a specific type. 

1) Create an example Freight Order Type ZCCD in the TM customizing. Path: SAP 
Transportation Management  Transportation Management  Freight Order 
Management  Define Freight Order Types (you can copy an existing Freight Order 
Type and name it accordingly). 
 

2) Create a new condition ZENH_QUAN_TOL_DET with the following parameters: 
 
Condition    : ZENH_QUAN_TOL_DET 
Description    : Enh. Quantity Tolerance Det. Condition 
Condition Type  : /SCMTMS/CC_QUAN_TOL 
Origin of Condition : Condition Based on BRFplus Decision Table 
 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

125 

125 

Define the following content for the decision table of the condition: 
 

Quantity Change of Weight 
in default weight unit of 
measure 

Qty Change 

> 50 X (Relevant Quantity Change) 

<=50 False 

Save and simulate the new condition. It will consider a quantity change (in this case a 
quantity increase) of more than 50 kg as a relevant quantity change that the change 
controller shall later react on. Quantity changes below 50 kg will be considered as not 
relevant. The result of this Quantity Tolerance condition will be used in the following 
for the determination of a suitable change controller strategy. 
 

3) Create a new condition ZENH_DATE_TOL_DET with the following parameters: 
 
Condition    : ZENH_DATE_TOL_DET 
Description    : Enh. Date Tolerance Det. Condition 
Condition Type  : /SCMTMS/CC_DATE_TOL 
Origin of Condition : Condition Based on BRFplus Decision Table 
 
Define the following content for the decision table of the condition: 
 

Maximum Delta of Date 
Changes 

Date Chg. 

Is between 0 and 4000 “ “ 

Is between 4001 and 8000 2 (Non-Critical Change) 

> 8000 1 (Critical Change) 

Save and simulate the new condition. It will consider a date change (in this case a 
time increase) of more than 8.000 minutes as a critical date (time) change that the 
change controller shall later react on. Date changes between 4.001 and 8.000 
minutes will be considered non-critical changes. Changes between 0 and 4.000 
minutes are considered as no change. The result of this Date Tolerance condition will 
be used in the following for the determination of a suitable change controller strategy. 
 

4) Follow the IMG path to the Process Controller SAP Transportation Management  
SCM Basis  Process Controller and define the Change (Process) Controller 
Strategies ZENH_CHAC1 – ZENH_CHAC7 each of service type TOR_CHACO (the 
type for asynchronous processing). For each strategy n (n = {1, … , 7} assign the 
following standard methods (they just serve as a demonstration and you can of 
course play around with it and define your own sequences of methods for each 
strategy): 

ZENH_CHACn Change Strategy n DEF_REACT Def. reaction to date, 
location, quantity 
changes 

ZENH_CHACn Change Strategy n CHECK_CAPA Check Capacities 

ZENH_CHACn Change Strategy n FIX_TOR Fix Freight 
Document 

 
5) Create a new condition ZENH_CC_DET with the following parameters: 

 
Condition    : ZENH_CC_DET 
Description    : Enh. Change Cont. Strategy Det. Condition 
Condition Type  : /SCMTMS/CC_TOR_STRAT 

Origin of Condition : Condition Based on BRFplus Decision Table 
 
Define the following content for the decision table of the condition: 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

126 

126 

 

Indicates whether a 
quantity has been 
changed for this TO 

TO 
Type 

Indicates whether a date 
change has happened and 
classifies this 

CC Strat. 

False ZCCD “ “ DEF_CHACO 

False ZCCD 1 (Critical Change) ZENH_CHAC1 

False ZCCD 2 (Non-Critical Change) ZENH_CHAC2 

X (Relevant Quantity 
Change Determined) 

ZCCD “ “ ZENH_CHAC3 

X (Relevant Quantity 
Change Determined) 

ZCCD 1 (Critical Change) ZENH_CHAC4 

X (Relevant Quantity 
Change Determined) 

ZCCD 2 (Non-Critical Change) ZENH_CHAC5 

 
Save and simulate the new condition. It will consider a date change (in this case a 
time increase) of more than 8.000 minutes as a critical date (time) change that the 
change controller shall later react on. Date changes between 4.001 and 8.000 
minutes will be considered non-critical changes. Changes between 0 and 4.000 
minutes are considered as no change. The result of this Date Tolerance condition will 
be used in the following for the determination of a suitable change controller strategy. 
 

6) Use the created conditions in the customizing settings for the Freight Order Type 
ZCCD from step 1) to make the following entries in the required fields: 
 

Default Change Strategy      DEF_CHACO 

Change Strategy Det. Cond.   ZENH_CC_DET 

Quantity Tolerance Cond.     ZENH_QUAN_TOL_DET 

Date Tolerance Condition     ZENH_DATE_TOL_DET 

 
With these settings, changes for Freight Orders of type ZCCD will use the standard 
Change Strategy DEF_CHACO as the default strategy. Condition ZENH_CC_DET 
will be used to determine a Change Strategy depending on the types of changes and 
related entries in its decision table. The other two conditions that we have created will 
be used to determine the relevance of quantity and date/time changes by checking 
the configured tolerances. 

 

 
Picture: A simple Quantity Change example. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

127 

127 

In the example mentioned above a quantity change was done for a Freight Order of type 
ZCCD, i.e. the gross weight of the first item was changed from e.g. 645 KG to 900 KG. 
According to condition ZENH_QUAN_TOL_DET created in step 2 this change is considered a 
relevant quantity change. The result of this condition is then passed to the Change Controller 
Strategy Condition ZENH_CC_DET. In the example there was just a quantity change but no 
date (time) change detected. This situation matches line 3 in the decision table of condition 
ZENH_CC_DET that leads to the usage of Change Strategy ZENH_CHAC3 (just like shown 
in the example above). 
 
 
The second example is based on the first one and describes a simple demo setup for using 
the change controller to react on quantity changes done for a Forwarding Order (instance of 
BO TRQ) that has unplanned unfixed Freight Units (instances of BO TOR) assigned. The 
Freight Units shall be adjusted to the new quantity entered in the Forwarding Order. 

1) Create an example Freight Unit Type ZCCU in the TM customizing. IMG Path: SAP 

Transportation Management  Transportation Management  Planning  Freight 

Unit  Define Freight Unit Types (you can copy an existing Freight Unit Type and 

name it accordingly). 
 

2) Enhance the decision table of Condition ZENH_CC_DET from step 5) of the first 
example with the following entry: 
 

X (Relevant Quantity 
Change Determined) 

ZCCU “ “ ZENH_CHAC7 

 

3) Follow the IMG path to the Process Controller SAP Transportation Management  

SCM Basis  Process Controller and define the Change (Process) Controller 

Strategy ZENH_CHAC7. Assign the following standard method to the strategy: 
 

ZENH_CHAC7 Change Strategy 7 REBUILD_FU Rebuilds unplanned, 
unfixed FUs 

 
This strategy will execute standard method REBUILD_FU for rebuilding Freight Units 
based on quantity changes done for the related Forwarding Order from where the 
Freight Units were created. 
 

4) Use the created conditions in the customizing settings for the Freight Unit Type ZCCU 
from step 1) to make the following entries in the required fields: 
 

Default Change Strategy      DEF_CHACO 

Change Strategy Det. Cond.   ZENH_CC_DET 

Quantity Tolerance Cond.     ZENH_QUAN_TOL_DET 

Date Tolerance Condition     ZENH_DATE_TOL_DET 

 
With these settings, changes for Freight Units of type ZCCU will use the standard 
Change Strategy DEF_CHACO as the default strategy. Condition ZENH_CC_DET will 
be used to determine a Change Strategy depending on the types of changes and 
related entries in its decision table. The other two conditions that we have created will 
be used to determine the relevance of quantity and date/time changes by checking the 
configured tolerances. In this specific example strategy ZENH_CHAC7 will be found 
and executed when a quantity change is done to the Forwarding Order that a Freight 
Unit of type ZCCU relates to. 
 

5) Follow the menu path Application Administration  Planning  (General Settings) 
Freight Unit Building Rule. Create a Freight Unit Building Rule ZCCU_FUBR with 
document type ZCCU that was created in step 1). Use the following settings: 
 

Freight Unit Building Rule     ZCCU_FUBR 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

128 

128 

Description Enhancement Freight Unit Building Rule 

Document Type ZCCU 

Incompatibility Settings [space] 

Freight Unit Building Strategy Consolidate per Request (Compatible Parts) 

Critical Quantity Gross Weight 

 
On tab strip Advanced Settings choose FUBR_AUTO as the Process Controller 
Strategy. On tab strip Planning Quantities make the following entry: 
 

Planning Quantity for Freight 
Unit Building 

Gross Weight 

Unit of Measure for Split 
Quantity 

KG 

Split Quantity 1.000 

 
6) Follow IMG path SAP Transportation Management  Transportation Management  

Forwarding Order Management  Forwarding Order  Define Forwarding Order 
Types and define a new Forwarding Order Type ZFWO.  
 
You can copy e.g. an existing Forwarding Order Type, name it ZFWO and assign 
Freight Unit Building Rule ZCCU_FUBR to it. Moreover set the flag Automatic Freight 
Unit Building so that Freight Units are built when saving a newly created Forwarding 
Order of this type. 
 

7) You can now create a simple Forwarding Order of type ZFWO with e.g. a single 
product item that contains a Gross Weight Quantity of e.g. 2.570 KG. Save the 
Forwarding Order and take a look at the created Freight Units via tab strip Document 
Flow. With the given example configuration you should receive exactly one Freight 
Unit that carries the complete quantity. 
 

8) Edit the example Forwarding Order and adjust the Item Gross Weight Quantity to e.g. 
3.240 KG. Save this change and display (or refresh the eventually still open UI for 
your example Freight Unit) the Freight Unit again. The Change Controller Strategy 
found for the Freight Unit has detected the quantity change in the underlying 
Forwarding Order and adjusted the Freight Unit quantity accordingly. 

 

 
Picture: A quantity change in a Forwarding Order Item updated the related Freight Unit. 

 
 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

129 

129 

4.4.4 The Change Controller and how it works at runtime 
When a TOR BO instance is changed, the change controller functionality is started via 
Determination DET_CALL_CHACO which is registered on transactional point in time 
BEFORE_SAVE (Finalize). 
 
Within this determination Action FILL_TRANS_CHANGEINFO is called that executes the 
following tasks: 
 

 Date and Location changes are determined based on the evaluation of the configured 
Date Tolerance Condition. 
 

 Quantity Changes are determined using the Quantity Tolerance Condition. 
 

 New execution events are determined. 
 

 The transient node CC_CHG_TR is filled with the information about the identified 
changes. Here you can find the types as well as the related values of changes. 
 

 Customer/Partner enhancements can be determined (see also next section). 
 
In the following picture the structure of node CC_CHG_TR is shown with some remarks on 
the semantics of different groups of attributes. 
 

 
Picture: Data structure /SCMTMS/S_TOR_CCCHG of node CC_CHG_TR. 

 
In the next step the Change Controller Strategy is determined. For this, the TOR Type 
Customizing is read and the maintained Change Strategy Determination Condition is 
evaluated. If the condition was not maintained in customizing or it does not return a result the 
maintained default Change Strategy will be used for further execution. The default Change 
Strategy is only executed if there is actually a change determined and registered in transient 
node CC_CHG_TR.  
 
Moreover, all keys of changed TOR instances are grouped by the found strategy as well as 
the changes identified in transient node CC_CHG_TR ( mass execution enablement, i.e. for 
a group of changed TOR instances several different strategies as well as different kind of 
changes may be detected). 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

130 

130 

The attributes of transient node CC_CHG_TR are provided via Data Access Definitions to 
evaluate the decision table of the Change Strategy Determination condition. The condition 
then returns the corresponding strategy to be executed if the provided attributes uniquely 
match an entry in the decision table. 
The found strategy is either configured to be executed synchronously (service type 
TOR_CHACOS) or asynchronously (service type TOR_CHACO). 
 
Strategies of service type TOR_CHACOS are processed synchronously by calling Function 
Module /SCMTMS/TOR_PROC_CHACO_STRAT. You should use synchronous strategies 
with a bit care. Not only has the user (the current transaction) to wait for the strategy to be 
finally executed before the next step can be processed ( performance) but you should also 
keep in mind that the BOPF Determination-Validation-Cycle is not executed for the changes 
made by the executed strategy. 
 
Strategies of service type TOR_CHACO are registered for asynchronous processing. In 
Determination DET_TRIGGER_STARTEGIES, the registered strategies are then executed by 
calling Function Module /SCMTMS/TOR_PROC_STRAT_UPD in Update Task. This function 
module in turn calls Function Module /SCMTMS/TOR_PROC_STRAT_ASYNC in Background 
Task. Together they represent a separate transaction and in this case also the BOPF 
Determination-Validation-Cycle is executed for the changes made by the executed strategy. 
 
The following picture provides a schematic overview and summary of the functional blocks 
described in this section. 
 

 
Picture: A rough picture of how the change controller works at runtime. 

 

4.4.5 Enhancing the Change Controller 

In the previous section we could see that there are already quite some attributes available in 
the data structure /SCMTMS/S_TOR_CCCHG of node CC_CHG_TR that represent different 
kinds of changes. But customers and partners may have to react on different or additional 
changes. 
 
1. The BAdI /SCMTMS/TOR_CHACO_CHANGES_DET allows enhancing the standard 

logic for identifying changes in TOR BO instances. It provides the following methods that 
can be used: 
 

 DET_DATE_AND_LOC_CHANGES: Determine Date and Location Changes. The 
method allows enhancing or even replacing the standard logic for identifying and 
classifying date and location changes. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

131 

131 

 DET_QUANTITY_CHANGES: Determine Quantity Changes. The method allows 
enhancing or even replacing the standard logic for identifying and classifying quantity 
changes. 
 

 DET_CUSTOM_CHANGES: Determine Customer-Defined Changes. Customer and 
partner-specific changes can be determined and stored in extension fields of the 
transient node CC_CHG_TR. These extension fields can be added to the node via its 
extension include EEW_TOR_CCCHG. 

 
2. The reaction on changes can be enhanced with the following means that make use of 

functions and features provided with conditions and process controller strategies. These 
concepts have been introduced in the previous sections and are used here as well in the 
context of the Change Controller: 
 

 Customer/partner specific Data Access Definitions can be added in customizing for 
providing access to extension fields added to transient node CC_CHG_TR. These 
additional Data Access Definitions can then be used to define the Change Controller 
related conditions for determination of date and quantity tolerances as well as finding 
an appropriate Change Strategy. 
 

 Additional customer/partner specific process controller strategy methods of service 
type TOR_CHACO or TOR_CHACOS can be created. 
 

 The standard as well as the customer/partner specific methods can be combined into 
new change (process) controller strategies of service type TOR_CHACO or 
TOR_CHACOS. 
 

3. You can use the Change Controller to raise events, e.g. that the execution of a Freight 
Order will be delayed. The system can then e.g. send a mail with a related alert message 
to the responsible user that can then react accordingly. 
 

 An example is the standard Change Controller Strategy method TOR_DELAY. It is 
implemented in the standard class /SCMTMS/CL_CHACO_METHODS method 
HANDLE_DELAY_FROM_EXECUTION. 
 

 This method fills the internal table MT_ALERT_CAT_KEYS_MESS of the Change 
Controller Request Object with the TOR keys per alert category and related 
messages. 
 

 If you implement your own Change Controller Strategy methods that shall be able to 
check customer/partner specific changes and to raise events depending on the 
determined changes, you have to make sure that it fills the mentioned internal table 
as described, i.e. the events are “registered” in this internal table. 
 

 You can then add such methods to your Change controller Strategies. At runtime they 
will check changes and add related events where required. 
 

 To finally trigger the events that have been registered in internal table 
MT_ALERT_CAT_KEYS_MESS you have to add the standard Change Controller 
Strategy method CHACOALERT after the event raising methods in the sequence of 
strategy methods. This method is implemented in the standard class 
/SCMTMS/CL_CHACO_METHODS method CHACO_CREATE_ALERT. It is used to 
raise events from a change strategy. 
 

 Raised alerts can be displayed in the Alert Inbox of the corresponding Users that are 
responsible to react on the different alerts. 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

132 

132 

4.4.6 The Trigger Concept 

The Trigger Concept of the Change Controller allows actions to finish successfully even in 
cases where not all operations could be executed due to locking issues. An example use 
case looks as follows: 
 
1. A quantity update on a Forwarding Order (TRQ) leads to a quantity change on a related 

Freight Unit. 
 

2. Change Strategy START_TEND is found to restart the tendering process. 
 

3. But the assigned Freight Order is locked (assume the Freight Unit is already assigned to 
a Freight Unit). The current tendering process cannot be stopped and restarted 
immediately. 

 
4. The trigger TOR_APPLY_CHACO_STRATEGY is set to process the Change Strategy 

START_TEND again at a later point in time. 
 

5. Report /SCMTMS/PROCESS_TRIGGER_BGD is used to reprocess the triggers 
periodically until the Change Strategy START_TEND can be finished successfully. For 
this the mentioned report should be scheduled to run periodically. 

 
There are different triggers provided with the SAP TM Standard and defined in a Trigger 
Registry Table (system table /SCMTMS/I_TRIG), i.e. in this table triggers with different 
semantics are defined. In general there are two types of triggers distinguished: Triggers set 
by Action Calls and triggers set by Function Module Calls. 
 

 
Picture: Trigger Registry Table /SCMTMS/I_TRIG. 

 
The helper class /SCMTMS/CL_TRIG_HELPER provides methods that allow setting a 
corresponding trigger after having called an Action or a Function Module. You can call them 
e.g. after the call of your own Actions and Function Modules within you own coding and use it 
to set triggers defined in the above system table. 
 

 SET_TRIGGER_FOR_ACTION: Can be called after execution of Actions. It checks for 
failed keys returned by the Action due to locking issues and sets the trigger for the found 
keys if required. Example Call: 
 
    CALL METHOD /scmtms/cl_trig_helper=>set_trigger_for_action( 

      EXPORTING 

        io_message        = lo_message 

        it_failed_key     = lt_failed_key 

        is_action_context = ls_action_ctx 

        iv_trigger_id     = lv_trigger_id 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

133 

133 

        it_forced_key     = lt_key_async 

      IMPORTING 

        eo_message        = lo_message2 

        et_failed_key     = lt_failed_key2 ). 

 

 SET_TRIGGER_FOR_FUNCTION: Can be called after execution of Function Modules. It 
checks for locking issues and sets the trigger for all those keys that required it. Example 
Call: 
 
    CALL METHOD /scmtms/cl_trig_helper=>set_trigger_for_function 

      EXPORTING 

        it_key             = it_key 

        it_failed_key      = lt_failed_key 

        is_parameter       = is_parameter 

        iv_trigger_id      = /scmtms/if_trig_c=>gs_c_trigger_id- 

                           tor_apply_chaco_strategy 

      iv_function_module = /scmtms/if_tor_strat_const=>sc_fm_pro 

 c_strategy-chaco 

           io_message         = lo_message2. 

 
The set triggers are registered in the Trigger Header Table /SCMTMS/D_TRIGHD. An entry 
of this table provides information about the Trigger Context, i.e. which BO, BO node, instance 
of this BO node (i.e. which instance key), etc. has led to setting which trigger. 
 
When running report /SCMTMS/PROCESS_TRIGGER_BGD it tries to execute the function 
related with the trigger again. The corresponding information of the set triggers comes from 
the above mentioned Trigger Header Table /SCMTMS/D_TRIGHD. The report will delete 
entries from the table when they could be finally executed successfully. The table so to say 
represents the workload for the report. When you schedule the report to run periodically it will 
continue to restart functions until they are finally executed successfully. The report will 
remove entries from the Trigger Header table on successful execution. 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

134 

134 

4.5 Implicit Enhancements 
For ABAP programs, a number of so called implicit enhancement options exist, for example: 
 

 At the end of an include, 

 At the end of a structure definition (types, data, constants, statics), 

 At the start and at the end of a method or function module, 

 Replacing method implementations by overwrite-methods. 
 
These options provide very powerful means to alter standard code. In some cases, there are 
no other ways to enhance, for example when adding a type or data definition. In other cases, 
SAP strongly recommends to use BAdIs instead, since they provide a defined interface. 
Nevertheless, some of the mentioned options shall be described here to be used as a means 
to create enhancements. 
 

4.5.1 Use Implicit Enhancements with care 
Implicit Enhancements should be used with care. The following aspects should be kept in 
mind when making use of this enhancement technique: 
 

 Detailed knowledge on the application code is required for identifying the objects to 
be enhanced for a specific purpose. 

 In case of methods that are not part of a stable interface, the signature can potentially 
change. 

 This can lead to problems in case a pre- or post-method implementation relies on 
parameters from the methods signature, especially when parameters might have 
been removed. 

 Enhancement SPAU might become necessary after updates to analyze conflict 
situations related to your Enhancement Implementations. 

 In case of overwriting methods by copying the code of a standard method and 
adjusting it within an overwrite method implementation, you will not get the changes / 
corrections for the standard portion of your implementation. 

 

4.5.2 Pre-, Post- and Overwrite Methods for existing methods 
ABAP objects classes or interfaces can be enhanced by Pre-, Post- and Overwrite methods 
that are executed before or after the original method implementation or in case of Overwrite 
Methods replace the complete original implementation at runtime. As an example let’s 
assume that we have identified class /SCMTMS/CL_TOR_A_CONFIRM, method Execute as 
the right method where a customer-specific behavior needs to be added. The following steps 
are valid for any class and for Pre-, Post- as well as Overwrite Methods: 
 
1) Navigate to class /SCMTMS/CL_TOR_A_CONFIRM that shall be enhanced by the 

implementation of a Pre-Method (Post-Methods are created the same following way) and 
display the class. 
 

 Transaction SE24 can be used, in case the class is already known. 

 Transaction SE80 can be used to navigate to the class. 

 Transactions /BOBF/CONF_UI and/or /BOBF/CUST_UI can be used to navigate to 
implementing classes of BO node elements like Actions, Determinations or 
Validations of a BO to be enhanced. 
 

2) Now follow menu path Class  Enhance (Shift+F4) to switch the class into enhancement 
mode. On the following two popups enter an Enhancement Implementation name and a 
short text which describes the enhancement. Continue with pressing Enter. 
 
On the second popup specify the package where you want to store the Enhancement 
Implementation. In this example we store it as a local object in package $TMP. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

135 

135 

 

 
Picture: Switching the class into enhancement mode. 

 

 
Picture: Specifying the Enhancement Implementation and package. 

 
For the example name the Enhancement Implementation ZENH_DEMO_IMPL_ENH and 
Demo Implicit Enhancement Pre- and Post-Methods as the short text. Assign the 
Enhancement Implementation to package $TMP (or another package of your choice). 
 

3) In the method list of the class mark the method you want to enhance. In this example it is 
method Execute. 
 

 
Picture: Marking a specific method in the list of methods. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

136 

136 

        
4) As an example follow menu patch Edit  Enhancement Operations  Insert Pre-Method 

to add a Pre-Method to the marked method Execute. 
 
The menu (see picture below) also shows the other Enhancement Operations which can 
be executed, i.e. besides the Pre-Method you could also add a Post- and an Overwrite-
Method via the same menu with the same described steps. 
 
Moreover the last three operations in the menu allow also deleting existing Pre-, Post- 
and Overwrite-Methods, i.e. you can choose these operations to roll back corresponding 
implicit enhancements. 
 

 
Picture: Available implicit Enhancement Operations. 

 
After having chosen the required Enhancement Operation another popup will come up 
and ask you to specify whether you want to enable the enhancement implementation to 
have access to private and protected components of the original class. In this example 
we choose option Yes. 

 

 
Picture: Specify the type of access to the original class. 

 
5) For the selected method there will be a button displayed in one of the columns PreExit, 

PostExit or OverwriteExit of the method list, depending on the Enhancement Operation 
you have chosen. In the example we have chosen Insert Pre-Method. So the column 
PreExit for the enhanced method Execute now shows a button that allows navigating to 
the editor for the implementation of the Pre-Method coding. The same button would 
appear in the corresponding column in case of a Post- or Overwrite-Method. 
 

 
Picture: Navigating to the implementation of an implicit enhancement. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

137 

137 

6) Click on the button that is now visible in column PreExit for method Execute to Implement 
the Pre-Method with the coding that will be executed before the actual standard 
implementation at runtime. Implementation of Post- and Overwrite-Methods is triggered 
the same way where the Post-Method implementation is executed after the standard 
implementation and the coding of an Overwrite-Method would replace the complete 
standard implementation at runtime. 
 

 
Picture: Implementing the example Pre-Method. 

 
7) Finally save and activate the Enhancement Implementation. To stress again: You should 

make sure to handle the depicted implicit enhancements (Pre-, Post- and Overwrite-
Methods) with care. Keep in mind the potential problems and consequences mentioned at 
the beginning of this section. 

 
Moreover it is highly recommended to implement such enhancement code in your own 
local class methods and just place the call of these local class methods into the 
Enhancement Implementation. This will provide more transparency for customers and 
partners as well as for SAP in case of problem analysis, support, etc. This also provides a 
better overview for customers and partners over the coding that they have added with the 
described techniques. 

 
 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

138 

138 

4.6 Helper Classes provided by SAP TM 
 
In the last sections techniques for enhancing the business logic were introduced. Some of 
them require customer or partner specific coding in available BAdIs, Implicit Enhancements, 
etc. During this work many tasks to be solved with coding occur repeatedly. Also the SAP TM 
standard implementation faces the situation that certain functions are needed repeatedly 
many times and in a variety of use cases. This kind of reuse functions are implemented in 
Helper Classes. 
 

4.6.1 How to find SAP TM Helper Classes 
Finding the helper classes provided by SAP TM is quite easy. Just start transaction SE24 and 
enter /SCMTMS/*HELPER* in the field Object Type. Then press F4 and check out the listed 
classes in the search result. You can find here more than 160 helper classes that serve a 
certain purpose (see short description for hints on what the class was implemented for). In 
general, the Helper Classes contain the term HELPER which makes it quite easy to find them. 
 

  
Picture: F4-Help with /SCMTMS/*HELPER* in SE24. 

 
As you can see in the picture above there are multiple Helper Classes found that by naming 
convention relate to a certain Business Object. Class /SCMTMS/CL_TOR_HELPER_STAGE 
is an example for a class that contains functionality to extract Stage information of a set of 
given Freight Orders. Other reuse functionality in the context of the TOR Business Object is 
implemented in further Helper Classes /SCMTMS/CL_TOR_HELPER_XXX. 
 

4.6.2 Why using SAP TM Helper Classes? 

As indicated, there are certain functions that are required in many different use cases. It 
therefore made a lot of sense to implement such reuse functions in helper classes that can be 
reused. 
 
Example: Instead of implementing the logic for extracting the stages of a Freight Order again 
and again with the risk of creating many different ways to do one and the same thing, this 
function is available in one of the Helper Classes that come with SAP TM. In this example 
instead of an own implementation, the developer could use method GET_SATGES of the 
helper class /SCMTMS/CL_TOR_HELPER_STAGE. With its importing parameters this 
method allows e.g. specifying a list of Freight Orders (e.g. with their Root Keys) and a few 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

139 

139 

other parameters that determine what Stage Details shall be returned. In the exporting 
parameters the corresponding data is then returned. 
 
It its recommended to check for available reuse functionality provided in the Helper Classes 
before making the decision for an own specific implementation. The following aspects should 
be considered: 
 

 Reduction of development time by reusing existing functions and methods: 
SAP TM Standard development has already implemented numerous functions and 
methods that server a specific purpose and are reused throughout the SAP TM 
application in all functional areas. The Helper Classes can help to reduce your 
development time by reusing already existing functions and methods. 
 

 Prevention of multiple approaches for one and the same function: 
You have one single place in coding that realizes the required functionality which helps to 
keep the application consistent in terms of how a specific function or logic is realized and 
executed. The Helper Classes represent a single point of access. 
 

 Preventing inconsistent data retrieval: 
Some SAP TM information like e.g. the Stop and Stages information of Freight Orders is 
stored in a way that multiple Business Object nodes are involved to represent the data in 
a very flexible way. Stop and Stages information of a Freight Order e.g. is represented by 
the STOP and STOP_SUCCESSOR node of the related TOR Business Object.  
 
Accessing this data should not be implemented by yourself if you do not exactly know the 
underlying data model. Using the methods of the Helper Classes ensures that you access 
this data exactly with the same consistent and performing logic like the SAP TM standard 
application. 

 
Nevertheless when reusing helper classes and their methods you should always test and 
verify the provided functionalities. Make sure that in your use case the reused classes and 
methods really return the required data and prevent reading unnecessary data or executing 
unnecessary calls, i.e. follow the principle “as much as necessary and as few as possible”. As 
standard development is continuously optimizing the performance of the helper classes and 
their methods you should always make sure that they also perform well in the context in which 
you used them, i.e. they may not perform well if they are used in a non-ideal context.  
  
 
 
 
 
 
 
 

 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

140 

140 

5 User Interface Enhancements 
This chapter provides the basics on how to enhance the user interface of TM 9.0. As 
mentioned in sections 2.2 and 2.3 the user interface is built with the help of the Floor Plan 
Manager (FPM) and the Floor Plan Manager BOBF Integration (FBI). These two frameworks 
enable enhancing a user interface via configuration rather than having to implement additional 
code. 
 
This document can for sure not cover a complete description of FPM and FBI. It therefore 
concentrates on the very basic things that customers and partners need for creating basic 
and common enhancements of the UI by adjusting the standard configurations of the TM user 
interface. The examples used here are based on the Freight Order UI but the principles and 
techniques are valid for any other TM user interface too. For more complex user interface 
enhancements, it is recommended to build up more detailed FMP and FBI knowledge. 
 

5.1 FPM – Floor Plan Manager 
Since release 8.0, SAP Transportation Management uses the Floor Plan Manager (FPM) to 
realize its User Interfaces. FPM is a Web Dynpro ABAP application that provides a framework 
for developing new Web Dynpro ABAP application interfaces consistent with the SAP UI 
guidelines. FPM allows a modification-free composition of discrete User Interface Building 
Blocks (UIBBs) which are compliant with the mentioned guidelines. 
 

 
Picture: FPM Overview. 

 

5.1.1 User Interface Building Blocks 

The Web Dynpro ABAP Floorplan Manager (FPM) is a framework which composes 
application specific views (UIBBs) to an application. This allows a homogeneous high-level 
application structuring and interaction behavior. Instead of building the User Interface as an 
individual Web Dynpro Application, FPM centrally provides predefined UIBBs, so called 
Generic UI Building Blocks (GUIBBs) that can be reused to create UIBBs. GUIBBs used in 
the TM 8.0 User Interface are: 
 

 Overview Pages (FPM_OVP_COMPONENT): Defines the general layout of the screens. 
It displays a title bar, a tool bar as well as one or more UIBBs. 
 

 Form GUIBB (FPM_FORM_UIBB): A flat collection of input elements which displays the 
content of a (flat) structure → must use a form-compliant Feeder Class. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

141 

141 

 List GUIBB (FPM_LIST_UIBB): Displays the content of an (internal) table → must use a 
list-compliant Feeder Class. 

 

 Tree GUIBB (FPM_TREE_UIBB): Displays the content of an (internal) table in a 
hierarchically way → must use a tree-compliant Feeder Class. 

 

 Tabbed GUIBB (FPM_TABBED_UIBB): Used to display a tab strip including further 
UIBBs with an optional master UIBB on top of it → does not require a Feeder Class 
(sometimes misused for layout purposes which it was not designed for). 

 
The application only provides the data and a layout configuration to these GUIBBs. The 
rendering is handled by the framework itself. Generic UI Building Blocks provide a 
comprehensive way of creating or changing User Interface Compositions, without the 
necessity to change the underlying application code base and thereby offering a concept for 
modification free customer UI enhancements. The composition (configuration) of those 
building blocks takes place in a design time application (in this case a Web Application) where 
all the necessary field attribute, positioning and layout properties are assigned or composed.  
 
GUIBBs are design templates for which, at design time, the application defines the data to be 
displayed along with a configuration. The concrete display of the data on the user interface is 
not determined and generated by the GUIBB until runtime. This is done automatically using 
the configuration provided. 
 

5.1.2 Feeder Classes 
Necessary or mandatory application specific information will be supplied by the application 
itself via a so called Feeder Class implementation. Feeder Classes are based on a predefined 
interface definition providing all necessary methods and corresponding signatures for 
standardizing the communication between the application and the GUIBB. With these Feeder 
Classes the application 
 

 Provides a field catalogue to the GUIBB design and runtime. 

 Provides the data at runtime. 

 Accepts UI changes at runtime by calling application middle ware. 

 Handles user interactions (events) at runtime by calling application middle ware. 

 Provides field control data to control visibility and changeability of UI elements. 
 
The UI Administrator or Designer can 
 

 Create UI layouts as a Web Dynpro Configuration for the standard GUIBBs. 

 Put together such discrete GUIBB configurations in an application configuration. 
 
In the traditional approach, the UI developer develops multiple Web Dynpro Components with 
fixed view layouts and delivers a fully assembled application. With this approach, realizing 
customer-installation specific UI variants requires modification of such applications. 
 
With the FPM approach, it is possible to enhance application user interfaces and fit them to 
your business needs, based on configuration instead of modifications. Besides the GUIBBs, 
FPM still allows the implementation and usage of freestyle UIBBs that can be realized 
individually to serve specific purposes that cannot be handled via GUIBBs. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

142 

142 

 
Picture: Traditional and FPM UI development approach. 

 
At runtime, user interactions are handled by FPM events that pass an FPM phase model 
(Event Loop). Within the FPM event loop specific methods are called that are based on a 
predefined interface definition and corresponding signatures in order to standardize the 
communication between the application and the GUIBB. A Feeder Class implements such a 
predefined interface for a specific GUIBB, e.g. the interface IF_FPM_GUIBB_FORM for Form 
components. Important methods are: 
 

 INITIALIZE: Called at runtime when the form is created. It is the first feeder method which 
is called from FPM. 
 

 GET_DEFINITION: Allows the feeder to provide all necessary information for configuring 
a form: the list of available fields and their properties and the list of actions (FPM events). 

 

 FLUSH: The first feeder method which is called during an event loop. Whenever an FPM 
event is triggered (this includes all round trips caused by the form itself) this method is 
called. Use it to forward changed data from the form to other components in the same 
application. 
 

 PROCESS_EVENT: Called within the FPM event loop. The FPM PROCESS_EVENT is 
forwarded to the feeder class. Here the event processing can take place and this is where 
the event can be canceled or deferred. 

 

 GET_DATA: Called within the FPM event loop. The FPM PROCESS_BEFORE_OUTPUT 
event is forwarded to the feeder class. Here you specify the form data after the event has 
been processed. 

 
There are two options when building an FPM-based application. First option: Individual 
Feeder Classes. Each GUIBB has its own individually implemented feeder class. Second 
option: Usage of Generic Feeder Classes that are provided with the contextual information via 
feeder parameters. In SAP Transportation Management, the second option was chosen. The 
advantage is that the feeders need to be implemented only once (high reuse) and 
enhancements in the feeder logic are implemented in less feeder classes. 
 

5.1.3 Wire Model 

The wire model is used to create a running FPM application by pure configuration (or at least 
with a minimal coding effort). The runtime interdependencies between UIBBs are defined by 
configuration entities called “wires” which are based on reusable “connector” classes 
implementing the dependency semantics. The primary use cases for the wire model are 
object models with generic access interfaces like BOPF. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

143 

143 

A wire controls the runtime interdependencies between two UIBBs, i.e. they determine the 
data content of the target UIBB depending on user interaction changing the “outport” of the 
source UIBB. Outports can be of type lead selection, selection or collection. For example, 
changing the lead selection in a list of Forwarding Order Items may change the data content 
of another list displaying the associated Item Details. 
 
Application areas or object models define their own namespaces for which their connector 
classes, feeder model classes can be reused. Moreover, they typically need to provide a 
transaction handler class which manages transaction events like “save”, “modify” or “check” 
and global message handling. 
 
Wires are defined on the level of the Floorplan Configuration. For each model UIBB contained 
in the Floorplan Configuration, a source UIBB with specified outport can be defined. 
Furthermore, a connector class and, potentially, connector parameters must be maintained. If 
the Floorplan contains composite components (tabbed components), the model UIBBs 
contained in the tabbed components can also be wired. However, in order to provide better 
reusability of composite components, it is also possible to define intrinsic wiring for tabbed 
components. A tabbed component can define a model UIBB as a “wire plug” (this is usually a 
master UIBB), which serves as an entry point for the wiring of the tabbed component from the 
enveloping Floorplan component. If a wire plug is configured for a tabbed UIBB, only the wire 
plug UIBB can be wired from outside. 
 
An example for using a wire is provided in section 5.4.3 where a new tab is added, based on 
an extension sub node. 
  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

144 

144 

5.2 FBI – Floor Plan Manager BOPF Integration 
The Floor Plan Manager BOPF Integration (FBI) is used in SAP Transportation Management 
8.0 to integrate FPM with the BOPF-based Business Objects. FBI provides generic FPM 
application feeder classes together with the relevant application configuration that allows 
consuming services of Business Objects modeled in BOPF. These BOPF services can be 
used seamlessly in a modification-free UI environment.  
 
FBI provides the following functionalities that support the communication and corporation 
between FPM applications and BOPF-bases Business Objects: 
 

 Editing data of BO node instances in the standard GUIBBs FORM and LIST. 

 Accepting action parameter values and invoking corresponding actions on BO node 
instances. 

 Overview Search (OVS) based on BO node queries. 

 Input of external IDs on initial screens and subsequent conversion of these external IDs 
into internal (technical) IDs (Alternative Key Conversion). 

 UI-specific services are supported: 
o Navigation to multiple targets. 
o Calling dialog boxes and editing application data in these dialog boxes. 
o Support of UI-specific non-BOPF actions. 

 

 
Picture: Technical relation between FPM, FBI and the BO layer. 

 
Some concepts/entities of FBI that will be relevant for the UI enhancement topic described 
later in this document: 
 

5.2.1 FBI View (design time) 

FBI Views are the place where the design time UI structure of a building block is defined. 
Moreover, it contains the classes for conversion/mapping of BOBF BO data to this UI 
structure. An FBI View is closely related to a single BO node. But “Related Views” are also 
supported. They allow extracting data from multiple BO nodes into a single UI structure. 
Actions that are not related to the BO are also defined in the FBI View (FBI views are stored 
as a configuration of Web Dynpro Component /BOFU/FBI_VIEW). 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

145 

145 

 
Picture: Example FBI View. 

 

 Header: 
- Contains the mandatory part: Business Object and Node.  
- Optional UI Structure (if not specified, then node structure is used). 
- Optional Mapper Class (if not specified, MOVE-CORRESPONDING is used). 
- Optional Exit Interface Implementation Class (details later). 
- Additional settings, like Read-Only, etc. 

 

 Related Views (optional): 
- Allows the definition of a chain of Views to read data from more nodes (e.g. when 

information coming from several nodes shall be combined into one flat UI structure to 
be displayed in a list). 

- Each related view is included with a mandatory suffix. This helps preventing collisions 
in case in two or more involved Views attributes with the same name appear. 

 

 Field Descriptions (optional): 
- Can be used to specify additional properties for structure attributes. 
- These settings are passed to the FPM field catalogue.  
- E.g. Sorting Allowed, Allow Filter, Domain Fixed Values, Fixed Values, F4-Values 

from Code Value List etc.  
 

 Actions (optional): 
- Allows definition of new Event IDs. 
- For the new Event IDs, as well as for the existing ones (Standard FBI and BO 

Actions, which are taken into account automatically), you can specify additional 
settings:  
 

o Set specific Name and Tooltip (via OTR aliases) – they will be passed to the 
FPM action catalogue. 
 

o Specify another Event ID, whose enable/disable properties are to be 
inherited.  

 
o Specify whether the action is allowed to be triggered in read only mode.  

 
o Specify whether the action is allowed to be executed only when a record is 

selected.  
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

146 

146 

o Specify navigation target (in this case, FBI calls Navigation Class instead of 
Standard handling).  

 

5.2.2 FBI View Instance (runtime) 

The instances of an FBI View hold the keys of the displayed instances (coming from the wires 
that UIBBs are connected with). An instance e.g. prepares modifications, executes actions 
and posts change notification to the controller. It reacts to the FBI-specific SYNCUP Event, 
i.e. it evaluates change notifications and determines which of the keys must be refreshed.  

 
Moreover it reads the data from node buffers or from the BO layer in case of modified keys. 
Where required it also calls conversion classes for the modified records (e.g. to convert a 
document ID into its corresponding technical key). A view instance calls available Exit 
methods at the appropriate places. 
 

5.2.3 FBI Controller (runtime) 

The FBI controller is responsible to do the orchestration between FBI View instances and the 
BO layer. It does not contain any application logic but only provides the technical framework 
for the orchestration. It provides a Modification Buffer for changes done on the UI that are 
then forwarded from there to the BO layer, i.e. it centralizes the BO Layer responses. It also 
collects the change notifications coming from the BO layer that then need to trigger updates 
on the UI.  

 
Further buffers hold the information on the nodes read from the BO layer and the properties of 
nodes and their attributes. The properties determine e.g. whether an attribute is a mandatory 
field or is ready for input. Moreover, these buffers help to avoid redundant BOPF service calls. 

 

5.2.4 Conversion Classes  

When data is send from the BO layer to the UI, the conversion class is called to convert 
technical attributes into their clear text representation. The same conversion class is also 
called when data is send from the UI back to the BO layer, i.e. it converts clear text 
information in to its technical representation. 
 
Conversions are done immediately after retrieval of data and shortly before sending 
modifications to the buffer. A conversion class is specified in the FBI View definition. 
Implementations of Conversion Classes do always inherit from TM super class 
/SCMTMS/CL_UI_CONVERSION. Each redefinition of the super class must define its own 
mapping table in method BUILD_MAP_TABLE. The super class already contains a few 
generic (bidirectional) mapping rules which are based on field naming conversions: 
 
- Mapping rule for Date-Time Conversion: The conversion rule maps a field of type 

TIMESTAMP into its Date, Time and Time Zone part. A BO node attribute FIELD of type 
TIMESTAMP is automatically converted with this rule if the UI structure contains the 
attributes FIELD_D (Date), FIELD_T (Time) and FIELD_TZ (Time Zone). 

 
- Mapping rule for Date-Time Conversion into String: The conversion rule maps a field 

of type TIMESTAMP into a String. A BO node attribute FIELD of type TIMESTAMP is 
automatically converted with this rule if the UI structure contains the attribute FIELD_TTT 
(Formatted Date). 

 
- Mapping Rule for Alternative Key Conversion: The conversion rule maps a BO node 

foreign instance key into its corresponding foreign readable ID. For this, it uses e.g. the 
BO key, the BO node name and the alternative key for this node defined in the node Meta 
Data. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

147 

147 

- Mapping Rule for Code List Conversion: The conversion rule maps a BO code into a 
readable UI code value. A BO attribute FIELD with its code value X is converted into its 
readable UI code value if the UI structure contains the attribute FIELD_TXT. 

 

5.2.5 Exit Classes 

The generic feeder classes usually take care of all communication aspects between the 
corresponding GUIBB and the application. Nevertheless, there might be use cases that 
require a more specific implementation. For this, an Exit Class can be specified in the FBI 
View definition. Exit Classes provide many extension options and are the recommended 
means for adapting the standard FBI processing to customers and partner’s needs. 

 
Exit Class implementations inherit from TM super class /SCMTMS/CL_UI_VIEWEXIT_CMN. 
An Exit Class implements the following FBI Exit Interfaces: 

 
- Core Interface /BOFU/IF_FBI_VIEW_EXIT_INTF: The interface does not have any 

interface methods but the Exit Class implements it for enabling FBI to instantiate an 
object from this class. 
 

- Definition Interface /BOFU/IF_FBI_VIEW_EXITINTF_DEF: The methods of this 
interface offer the possibility to influence the processing of FPM phases Initialization and 
Get Definition (“one time” phases). Its implementation is optional. 
 

o Method ADAPT_FIELDS: Modify the field catalogue. 
 
o Method ADAPT_ACTIONS: Modify the action catalogue. 

 
o Method ADAPT_DND_DEFINITON: Modify drag & drop definitions. 

 
- Definition Interface /BOFU/IF_FBI_VIEW_EXITINTF_RUN: The methods of this 

interface offer the possibility to influence the processing of User Interactions (at each 
round trip). Its implementation is also optional. 
 

o Method ADAPT_CHANGE_LOG: Modify the list of screen changes before 
converting them into BO modification records. 
 

o Method ADAPT_EVENT: Intercept and process any event that arrives in the 
underlying FBI view. If custom event IDs were added to the FBI View, this is the 
place to implement the action handling for them. 
 

o Method ADAPT_MESSAGES: Modify the returned messages from the Modify 
and DO_ACTION service calls. 
 

o Method ADAPT_DATA: Modify the data before it is passed to FPM. The data is in 
the concatenated format (all related views in the chain plus the reference fields). 
Thus, the component of the UI structure must be accessed with ASSIGN 
COMPONENT... 
 

o Method ADAPT_FIELD_PROPERTIES: Modify the field properties of this view (at 
column level, these values are merged with the properties from the reference 
fields of the data structure). 
 

o Method ADAPT_ACTION_PROPERTIES: Modify the enabled/disabled properties 
of this view's actions. 
 

o Method ADAPT_SELECTION: Modify the selected lines (in list and tree). 
 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

148 

148 

5.3 General remarks on user interface enhancements 
Some general remarks for creating user interface enhancements: 
 

 Basic enhancements ideally can be done without any coding. For more complex user 
interfaces and enhancements, coding might be required, e.g. implementation of the Exit 
Class Methods mentioned in the last section. The examples in the following sections try 
to illustrate both. 
 

 Each TM user interface is build up from so called User Interface Building Blocks (UIBBs) 
as already described in sections 5.1 and 5.2. Each of these building blocks has a 
configuration that can be adapted by partners and customers. 

 

 The standard configurations will remain untouched. Configuration Enhancements can be 
created e.g. in a development system and get transported to a test or production system. 
The client of the system where you do the UI enhancements must be set up in a way that 
it allows development and transporting configurations. 

 

 Enhancements can also be deleted again. After deleting e.g. an Enhancement of a 
configuration, the original standard configuration is in place again for processing the 
corresponding user interface. 

 

 As per TM 9.0 the navigation to relevant configurations has been simplified. You just 
need to start the required User Interface and use the Technical Help link from where you 
then can navigate further to the different configurations that make up the UI. 

 

 
Picture: Invoke Technical Help… to navigate to UI configurations. 

 
Place the mouse pointer on the UI section of interest and click the right mouse button to 
display the context menu (see picture above). Then click on Technical Help. On the 
following screen, you get an overview of the current application configuration, the start 
configuration (Web Dynpro Component Configuration containing all sub-elements and 
their configurations) and the configuration of the current view, i.e. the part of the display 
that you marked before. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

149 

149 

 
Picture: Technical Help for a selected UI section. 

 

 On the Tab Web Dynpro Application of the technical help screen you can find the 
application configuration in section Application. Click on the link to navigate to the 
application configuration where you can display (and adjust) general application 
parameters. 
 

 In section Start Component of the same screen you can find the leading Web Dynpro 
Component Configuration (WDCC). Three links are listed here. 
 
Component Configuration: 
It represents the starting configuration of the corresponding application and contains all 
sub-elements (UIBBs, Views, etc.) with their related configurations. When the start 
configuration is displayed you can navigate further to all sub components of this 
application. 
 
Component Customizing: 
In the component configuration you can only see the standard content. Only in the 
Component Customizing you can later on see the Enhancements that you did for a 
standard configuration. Moreover, only here you can add Enhancements to existing 
configurations. 
 
Make sure that in transaction SICF the corresponding Service is activated. You can check 
this under the following path: sap  bc  webdynpro  sap  customize:component. In 
case the service is not active, let your system administrator activate it. Otherwise you 
cannot create any UI enhancements. 
 
Personalization: 
When following this link you get to the personalization settings for the specific application, 
i.e. here you can see all personalization settings of each authorized user as well as the 
general personalization settings for the application that are valid for all authorized users. 

 

 In section Current View you can find a link to the Component Configuration and 
Component Customizing that you have marked with the mouse pointer to start the 
technical help, i.e. it allows navigating to the configuration and customizing of the UI 
component that currently has the focus. 

 

 To create enhancements, you need to start the corresponding user interface from the 
SAP user menu or from within NWBC. Within the user interface you can then use the 
mentioned technical help (as per NW 7.31). 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

150 

150 

 

 A UIBB might in turn include other UIBBs. So when entering the configuration of a UIBB 
in the configuration editor you may have to navigate to further configurations in the 
Configuration Editor to get to the specific UIBB’s configuration that shall get 
enhancements. 

 

 There is another option to identify specific User Interface building blocks and their related 
configuration to be enhanced. When starting the User Interface from the SAP Menu (i.e. 
the “standalone” UI) you can add the following parameter to the URL of the User 
Interface: sap-config-mode. 

 
In the browser, simply place &sap-config-mode=X at the end of the URL to switch the 
User Interface into the Customizing Mode. When setting it to blank (instead of X) you 
switch of the Customizing Mode again. 
 
Note: This parameter can unfortunately still not be used for UIs started within NWBC. 

 

 Example: Assume we want to enhance the user interface of business object Freight 
Order. 

 
a) Start the user interface to be enhanced from your user menu to use it in your 

browser. 
 

 
Picture: Example – Standalone Freight Order UI with its URL. 

 
b) At the end of the URL enter the following additional parameter: “&sap-config-

mode=X” to enable enhancing/customizing this user interface. On the screens you 
will now see an orange bar with the text Customizing Mode, indicating that you are 
now exactly this mode. 
 

 
Picture: Adjusting Parameter SAP-CONFIG-MODE in the URL. 

 
c) Now click on the button (icon) Show Customizable Areas. This will now allow you to 

move the mouse over the different UI parts. Where ever a configurable component is 
detected, it will be marked with a little “wrench” icon that you can click on to start with 
enhancing this specific part (UIBB) of the UI. You will get directly to the Configuration 
Editor for the selected UIBB. 
 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

151 

151 

 
Picture: Identifying UIBBs that can be customized / enhanced. 

 
The simple example above shows the initial screen of the Display Freight Order UI. 
The described procedure of course works when you now continue and display a 
discrete Freight Order Document. On the next screen you can identify all UIBBs that 
make up the corresponding Freight Order UI or any other UI that you take a look at in 
Customizing Mode. 

 

 A UIBB might in turn include one or more other UIBBs. When entering the configuration of 
a UIBB, within the configuration editor you may have to navigate to further configurations 
of such “sub” UIBBs to get to their specific configurations if they are supposed to get 
enhanced. 

 

 When starting the configuration editor (in Customizing Mode) for a specific UIBB 
configuration that has not yet been enhanced, the system will always notify you with a 
corresponding error message: Object Component Customizing xyz does not exist. 

 

 
Picture: Creating the initial Component Customizing. 

 
The required Component Customizing can now be created by clicking on button New 
which will first of all raise a popup where you can provide a description for the new 
Component Customizing. 

 

 
Picture: Enter a description for the Component Customizing. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

152 

152 

 
The System will now ask you to assign either an existing Transport Request or create a 
new one that will carry all the adjustments for later transport from your development 
system to a test or production system. 
 

 
Picture: Assigning or creating a Transport Request for Enhancements. 

 

 So enhanced configurations or Component Customizing can be transported e.g. from the 
development system to the test system and further to the production environment after 
successful test. 
 
Adjustments / enhancements of existing component configurations can be considered as 
customizing, i.e. in this case you enhance an existing standard object. 
 
But: When you add completely new UIBBs (i.e. your very own configurations) to integrate 
them into an existing UI, the configuration, FBI View, etc. that you create are actually new 
objects that will be stored in your own package as your customer / partner specific 
objects. They can be attached to a workbench request 

 
 

 Transporting as well as deleting created Component Customizing is also possible via a 
corresponding Web Dynpro application that can be started with the following general link 
which has to be enhanced with information on server and port, depending on where you 
want to start the tool. 

 
http://[server]:[port]/sap/bc/webdynpro/sap/wd_analyze_config_comp 
 
Example: 
http://ukwtr9x.wdf.sap.corp:80089/sap/bc/webdynpro/sap/wd_analyze_config_comp 
 

http://[server]:[port]/sap/bc/webdynpro/sap/wd_analyze_config_comp
http://ukwtr9x.wdf.sap.corp:80089/sap/bc/webdynpro/sap/wd_analyze_config_comp


SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

153 

153 

 
Picture: Initial screen of the WD_ANALYZE_CONFIG_COMP tool. 

 
On the initial screen of the tool you can select configurations by different criteria 
(Component Name, Configuration Name or Author). Examples: 
 
Enter e.g. /SCMTMS/WDCC_FRE_ORD* to search for UIBB configurations that are used 
for the Freight Order UI. Or enter /SCMTMS/FRE_ORD_* e.g. search for FBI Views used 
in the context of the Freight Order UI. 
 

 
Picture: WD_ANALYZE_CONFIG_COMP tool with selected Configurations. 

 
When clicking on button Delete the selected Configurations are deleted after 
confirmation. To transport selected Configurations (e.g. your own UIBB Configurations) 
click on button Transport. On the following popup you can enter either an existing 
transport request or create a new one. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

154 

154 

  
Picture: Confirm deletion. 

 

 
Picture: Using an existing or creating a new Transport Request. 

 

 When you click on the link Goto Personalization you can see all personalization records 
for the selected Component Configuration. In the list of Component Personalizations you 
can find entries / records that represent user specific settings, e.g. User = ABCDE and 
User Scope = U or entries / records that are valid for all users, i.e. User = * and User 
Scope = A. Using the buttons Transport and Delete allows transporting and deleting 
selected entries. The link Call Customizing Editor allows starting the related editor. 
 

 
Picture: List of Personalizations. 

 

 When clicking the link Start Configuration Editor the Editor is started for the selected 
Component Configuration (i.e. in Customizing Mode) were you can adjust existing or 
create new enhancements. 

 
In the following sections different UIs will be used to demonstrate enhancement use cases. 
As mentioned, the principles and techniques used in these examples can be applied for any 
other TM UI too. The next section describes how to do a simple field extension on the UI. This 
section will also describe some more detailed aspects of the Configuration Editor which will 
be used in general, i.e. the descriptions provided in this next section also hold for other UI 
configuration enhancements and creating new customer / partner specific configurations. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

155 

155 

5.4 Enhancing the User Interface 

5.4.1 Field Extensions 

A very basic and common example for extending the user interface is adding additional fields 
on an identified building block that shall carry this additional information. The following 
example shows how to get a group of extension fields onto the tab General Data of the 
Freight Order UI.  
 
1) Start the Freight Order UI for displaying Freight Orders from the SAP user menu and set 

the configuration mode in the URL (Parameter sap-config-mode = X) for the UI as 
described in section 5.3. Click on button Show Customizable Areas. 
 

 
Picture: Switching on Customizing Mode for the Freight Order Display UI. 

 
Alternative: Start the same UI within NWBC and use the technical help as described in 
section 5.3 to navigate to the component customizing. 
 

2) Enter an existing Freight Order number and display the document by clicking on button 
Continue. On the next screen display tab General Data (a FORM UIBB). Move the mouse 
over the top most area of the displayed tab to highlight the first Form UIBB within this tab. 
 

 
Picture: Navigating to the Configuration to be enhanced. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

156 

156 

Target of this example is to add a new group of 3 extension fields to the selected Form 
UIBB. To start the Component Configurator, click on the “wrench” icon as shown in the 
picture above. The name of the standard configuration of that we will enhance in this 
example is: /SCMTMS/WDCC_FRE_ORDER_GEN_GNINF. 
 
Alternative: Using the technical help e.g. within NWBC to identify the correct standard 
configuration to be enhanced. If you use this for the example, make sure that you position 
the mouse in the top most part of the General Data tab of the Freight Order UI and in the 
technical help, section Current View click on the link Component Customizing that will 
open the Configuration Editor for /SCMTMS/WDCC_FRE_ORDER_GNINF. Always make 
sure that the Editor is in the Edit Mode to allow creating enhancements. 

 

 
Picture: Technical Help. 

 
3) In the configuration /SCMTMS/WDCC_FRE_ORDER_GEN_GNINF open section General 

Settings and click on button Feeder Class Parameters. Here you can find information 
which is relevant for the next steps: 
 

 FBI View: The FBI view which is assigned to the current UI building block. As 
described in section 2.3, the FBI view besides other information holds the information 
on the UI structure of a building block as well as the related business object node. 
 

 Business Object & Node: In some cases the UI building block is directly assigned or 
related to a specific business object node. If so, extension fields can directly be 
added to this node as described in section 3.4.3 and can afterwards directly get 
included in the UI layout. In this case, just continue with step 5. 

 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

157 

157 

Picture: Feeder Class Parameters of the current UIBB configuration. 
 
Example (see also picture above): FBI View /SCMTMS/FRE_ORDER_GEN is used, i.e. 
no direct relation to a business object node is used. In this case we need to display the 
FBI View to find out the business object node related to this UIBB (step 4). In other 
words, we take a look at the FBI View to find the BO / BO Node that provides the data to 
this UIBB and that needs to be extended in the backend to hold our extension fields. 
 

4) Display the identified FBI View /SCMTMS/FRE_ORDER_GEN. 
 
Alternative 1: 

 Start transaction SE84 and follow the following path: Repository Information System 
→ Web Dynpro → Component Configurations. 

 On the selection screen enter /SCMTMS/FRE_ORDER_GEN in field Component 
Configuration. Press F8. 

 In the following list mark the found entry. Press F7. 

 Click on button Display Configuration (or click on button Start Configurator and then 
on button Continue in Display Mode). 

 
Alternative 2: 

 Use the Web Dynpro application mentioned in section 5.4 to display the identified FBI 
View ( search by Configuration /SCMTMS/FRE_ORDER_GEN). 

 

 
Picture: Header details of the FBI View. 

 
Example: Our FBI View /SCMTMS/FRE_ORDER_GEN is related to the business object 
/SCMTMS/TOR (Freight Order), ROOT node. The name of the corresponding Node UI 
structure is /SCMTMS/S_UI_FRE_ORDER_GEN. 
 

5) Add your extension fields to the identified Business Object node as described in section 
3.4.3, i.e. you create an append structure with the extension fields for the corresponding 
extension include. 
 
Example: Create extension fields for the ROOT node of business object /SCMTMS/TOR. 

Business Object 
Information 

 Comment 

Business Object /SCMTMS/TOR Technical name of the business 
object. 

Extension Include /SCMTMS/INCL_EEW_TOR_ROOT The persistent Extension Include. 

Append Structure   

Name ZENH_DEMO_TOR_ROOT  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

158 

158 

Description Demo Field Extension for Freight Order 
(TOR) 

 

Component Typing Method Component Type 

ZENH_ENTRY_DATE Types /SCMTMS/DATETIME 

ZENH_PURORG_ID Types /SCMTMS/PURCH_ORG_ID 

ZENH_APPROVED Types FLAG 

  
In the easiest case the new fields are now already available in the field catalog of the 
required building block. But this is only the case if the UI structure mentioned in the 
related FBI View automatically includes the extension includes of the related business 
object node. If so, you can continue with step 7. 

 
6) Check and enhance the identified UI node structure if required. 

 
Example: For displaying Node UI structure /SCMTMS/S_UI_FRE_ORDER_GEN, use 
transaction SE11. Check if your extension fields are already available there. Assumption: 
The mentioned Node UI structure does not automatically include the required Extension 
Includes. In this situation you have two options to ensure that the extension fields are 
available in the field catalog of the UIBB to be enhanced. 
 

 Add the Extension Include /SCMTMS/INCL_EEW_TOR_ROOT of Business Object 
/SCMTMS/TOR, ROOT Node to the UI structure. This is quite easy and works but 
can eventually have a (UI) performance impact: If you enhance the mentioned BO 
Node with further fields that you do not need in the context of this specific Node UI 
Structure / UIBB, they nevertheless cause some overhead when the Node UI 
structure is used at runtime. 
 

 
Picture: Enhancing the Node UI Structure. 

 

 Alternative: Create your own Append in the mentioned Node UI Structure and only 
add those fields there which are actually required for the UIBB to be enhanced. In 
other words, the Node UI Structure will only contain fields that are actually used, 
preventing the overhead caused by other extension fields that might have been 
added to the Extension Include for different purposes. 

 
  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

159 

159 

7) Use the extension fields to enhance the configuration of the UIBB. 
 
The extension fields are now available in the field catalog of the UIBB to be enhanced. In 
this step, the configuration is enhanced by placing the new fields on the layout of the 
UIBB and defining the required field properties. 
 
Example step 1: On the General Data tab, we add a new group to carry the new 
extension fields. In the configuration /SCMTMS/WDCC_FRE_ORDER_GEN_GNINF click 
on button Add Group.  
 

 
Picture: Adding a new field group to the FORM UIBB. 

 
For this group, provide the following information. 
 

Field Content Comment 

Text Demo Enhancement 
Group 

The header text to be displayed for the new group. 

Start Row / Column 
of Element 

13 / A The starting row and column of the Layout position for the 
new Group. 

End Row / Column 
of Element 

13 / H The ending row and column of the Layout position for the 
new Group. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

160 

160 

 
Picture: Defining attributes & properties of a screen element. 

 
Example: Now we add the extension fields to the new group. In the configuration 
/SCMTMS/WDCC_FRE_ORDER_GEN_GNINF navigate to section Form UIBB Schema. 
Then on the sections tool bar click on button Element and choose Add Element at Next 
Level.  
 

 
Picture: Adding elements to the new Group. 

 
On the following popup screen you can find the list of available fields, including the 
extension fields that were added backend in the previous steps. Mark the required 
extension fields to be added to the new group and then click on button OK to add them. 
 

 
Picture: Assigning extension fields to the new Group. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

161 

161 

 
Picture: Specifying the attributes and properties of an element. 

 

 You can adjust the sequence of the extension field in the new Group by using the 
buttons Up and Down in section Form UIBB Schema. 
 

 The attributes and properties of a selected element (in this case e.g. a new extension 
field) can be maintained by marking it in the Form UIBB Schema (see picture above) 
and then specifying the different attributes and properties of this element in the 
screen section below. 
 

 Example: The first field in the new group is a flag. Change its Display Type to Check 
Box to display the new field as a check box on the screen. In field Tooltip add a tool 
tip for the field (e.g. “Approval for Enhancements”). 
 

8) Adjusting the Label Texts. 
 
In the example shown, it is not possible to directly enter a Label Text for the new field. 
Compared to NW 7.02 this feature has changed in NW 7.31 and higher releases. In the 
earlier NW releases you could just simply enter a Label Text directly in the configuration. 
 
In the higher NW releases, the Label Text is first of all automatically taken over from the 
data element used for the definition of the extension field in the backend, i.e. it is pulled 
from DDIC. 
 
But you can create your very own specific Label Texts, assign them to your extension 
fields and even have the chance to get language specific variants of these Label Texts 
which can be handled with the available translation tools available in the backend. Just 
like standard SAP TM development, you can create so called OTR Texts via transaction 
SOTR_EDIT and assign these OTR Texts to extension fields in the FBI View related to 
the UIBB that you extend. The procedure how to do this is described in the following 
sections. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

162 

162 

 
 
9) Finally, save the Component Configuration by clicking on button Save. The system might 

ask you for a transport request on a following popup. Select an existing or create a new 
transport request there and save your enhancements. The enhancements can now be 
tested by restarting the UI. 
 
Test the enhancement: Display an example Freight Order. Make sure that you switch of 
the Customizing Mode before (sap-config-mode = [space]). 
 

 Check if the new Group is shown on the correct UIBB with the assigned fields. 
 

 Bring the displayed document into edit mode and enter some data in the new 
fields. 

 

 Save the document, close the UI and reopen it again by displaying the example 
Freight Order again to check that the content of the new extension fields get 
persisted. 

 

 
Picture: The new group with the extension fields on the UI. 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

163 

163 

5.4.2 Adding a new action to a toolbar 

A second example for extending the user interface is adding additional actions on a toolbar. 
The following example shows how to get a new action onto the toolbar of the tab Items of the 
Forwarding Order UI.  
 
1) Start the User Interface for displaying Forwarding Orders from the SAP user menu and 

set the configuration mode in the URL (Parameter sap-config-mode = X) for the UI as 
described in section 5.3. Click on button Show Customizable Areas. 
 

2) Display an existing Forwarding Order and click on tab Items (a TREE UIBB). Move the 
mouse over the top most area of the displayed tab to highlight the first Form UIBB within 
this tab. 

 

 
Picture: The UIBB to be enhanced on the Forwarding Order UI Items Tab. 

  
Target of this example is to add a new Action Button on the Toolbar of the Items Tree 
UIBB that shall execute an action for a selected Forwarding Order Item. To start the 
Component Configurator, click on the “wrench” icon as shown in the picture above. The 
name of the standard configuration of that we will start the enhancement from in this 
example is: 
 
/SCMTMS/WDCC_FWD_ORDER_ITM. 
 
Alternative: Using the technical help e.g. within NWBC to identify the correct standard 
configuration to be enhanced. If you use this for the example, make sure that you position 
the mouse on the Tree UIBB of the Items tab on the Forwarding Order UI. In the technical 
help, section Current View click on the link Component Customizing that will open the 
Configuration Editor for /SCMTMS/WDCC_FWD_ORDER_ITM. Always make sure that 
the Editor is in the Edit Mode to allow creating enhancements. 

 
3) The system will start the Configuration Editor. If required and not yet done, create the 

Component Customizing for this configuration as described in section 5.3. In the 
Configuration Editor display section Preview. Here you can see the Toolbar to be 
enhanced, i.e. it is directly located in this configuration. 

 
5) In the configuration /SCMTMS/WDCC_FWD_ORDER_ITM open section General 

Settings and display the Feeder Class Parameters just like described in 5.4.1. Here you 
can find information which is relevant for the next steps:  
 
FBI view /SCMTMS/TRQ_ITM is assigned to the current UIBB. As described in section 
3.3, the FBI view besides other information holds the information on the UI structure of a 
UIBB as well as the related business object node, etc. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

164 

164 

Interesting in this example is the fact that the mentioned FBI View is an example for the 
usage of Related Views as mentioned in section 5.2.1. When displaying the FBI View 
above click on tab Related Views where you can find the following FBI View: 
 
/SCMTMS/TRQ_ITM_SEAL 
 
It provides additional data to be displayed along with the data provided in the main FBI 
View. The assigned BO node is ITEMSEAL which holds Seal Information for specific 
Forwarding Order Items. 
 

6) Display the found FBI View /SCMTMS/TRQ_ITM (as described in section 5.2, step 6) to 
identify the BO and its node that it is related to. 
 

 
Picture: Identifying the BO and BO node to be enhanced. 

 
For our example, the BO is /SCMTMS/TRQ (i.e. the Forwarding Order) and the node is 
ITEM (the item node of the Forwarding Order)  So this FBI View is provided with data 
from this specific BO Node which also propagates its Actions to be available in related 
UIBB configurations. 

 
7) Now use the BOPF Enhancement Workbench to create a new enhancement action as 

described in section 3.3.6. Example: Action ZENH_TRQ_ITEM_DEMO_ACTION with the 
implementing class ZCL_ENH_A_TRQ_ITEM_DEMO_ACTION. Make sure that the 
Action Cardinality is set to Multi Node Instances and the flag Action can be enhanced is 
set. 
 
The example implementation for its method EXECUTE looks as follows: 
 
METHOD /bobf/if_frw_action~execute. 

  DATA: lv_temp TYPE c. 

  MESSAGE s008(/scmtms/ui_messages) INTO lv_temp. 

  CALL METHOD /scmtms/cl_common_helper=>msg_helper_add_symsg 

    EXPORTING 

      iv_key      = /scmtms/if_tor_c=>sc_bo_key    " Instance Key 

      iv_node_key = /scmtms/if_tor_c=>sc_node-root " BO Key 

    CHANGING 

      co_message  = eo_message.          " Current message object 

ENDMETHOD. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

165 

165 

This very simple example action implementation takes a simple info message from 
message class /SCMTMS/UI_MESSAGES and puts it into the BOPF message object 
EO_MESSAGE. When you execute the new enhancement action the issued message will 
also be shown on the User Interface. This works of course for any message from any 
message class. 

 
8) Use the new action to enhance the configuration of the toolbar. Remember that we do 

this enhancement on configuration /SCMTMS/WDCC_FWD_ORDER_ITM. 
 
The action is now available in the action catalog for the toolbar to be enhanced. In this 
step, the configuration is enhanced by adding the new action to the toolbar and defining 
the required action properties.  
 

 
Picture: Adding a new Action to the Toolbar of a UIBB. 

 
Example: In configuration /SCMTMS/WDCC_FWD_ORDER_ITM navigate to section 
Toolbar Schema (see picture above) and click on button Toolbar Element to add the 
action ZENH_TRQ_ITEM_DEMO_ACTION we created in the previous step. On the 
following popup screen you can find the list of available actions, including the example 
action. Mark the action to be added and click on button OK to assign it to the Toolbar. 
 

10) You can also add Separators between the standard actions and enhancement actions. To 
do this click on button Toolbar Element in section Toolbar Schema again, mark the 
corresponding entry for a Separator and click on button OK. 

 

 
Picture: Adding a Separator. 

 
Actually, with the same procedure you can not only add buttons and separators but even 
other Toolbar Elements like Input Fields, Toggle Buttons, Button Choices, etc. In column 
Display Type of section Toolbar Schema, you can use the drop-down list to define what 
kind of element an entry in the list shall represent. Depending on the type, in the screen 
section below corresponding properties and attributes will be displayed and can be 
defined there to further specify the chosen element. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

166 

166 

 
11) If required, adjust the sequence of the actions in the list of Toolbar Elements in section 

Toolbar Schema. This is done with the buttons Up and Down. In the example place e.g. 
the added separator before the enhancement action button. 

 
12) In this example, we have added a new button that is related to a BO Node Action. You 

can now maintain the corresponding attributes for the new action e.g. as shown in the 
following picture: 
 

 
Picture: Define properties and attributes for the new Toolbar Element. 

 
Note: The attribute FPM Event ID is filled with the name of the Action that we have 
implemented and added to this UIBB Toolbar. In this case FPM/FBI will automatically find 
and execute the right BO Node Action. Assume you overwrite the FPM Event ID with your 
very own ID (e.g. MY_ACTION_ID). In this case you would have to implement the 
behavior of the button in the Exit Class of the related FBI View, method ADAPT_EVENT 
(see section 5.2.5). There you can then define via coding what shall be executed on 
clicking the new button. 
 

13) Finally, save the Component Configuration by clicking on button Save. The enhancement 
action is now available as a button on Toolbar for the Items Tab of the Forwarding Order 
UI which displays the Forwarding Order items. 
 
Test the enhancement: Make sure that you switch off the Customizing Mode before (sap-
config-mode = [space]). Display an existing Forwarding Order (that contains items) and 
mark one or more of its items. Then click on the new button. After execution you can see 
the message in the message log that we implemented to be issued in the related BO 
Node Action. 

 

 
Picture: The new action on the toolbar. 

 
 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

167 

167 

5.4.3 Adding a new tab with data from a new BO subnode 

The third example will show a more complex configuration enhancement. A new subnode for 
the Freight Order will be created. The data of this subnode shall be displayed as a list on a 
tab, including a toolbar with actions that can be executed on the available data. 
 
1) Create a new subnode for the Freight Order as a subnode of its Root Node with a 

cardinality of 1:N. We will use the example subnode ZENH_ROOT_SUBNODE as 
described in section 3.3.5 for the next steps. 

 
2) Start the editor for the Web Dynpro ABAP Component Configuration to create a new 

configuration (in this example we create a completely new one). The editor can be started 
via the following general link which has to be enhanced with information on server and 
port, depending on where you want to start the tool. 

 
https://[server]:[port]/sap/bc/webdynpro/sap/configure_component 
 
Example:  
https://ugaai9x.wdf.sap.corp:18562/sap/bc/webdynpro/sap/configure_component 
 
Here you can enter a component name and a new Configuration ID. 
 

Component 
Name 

FPM_LIST_UIBB_ATS The new configuration shall 
represent a list which will 
contain data from a new BO 
subnode. 

Configuration ID ZENH_WDCC_DEMO_LIST_UIBB This will be the new 
configuration to be 
integrated in the Freight 
Order UI. 

 
Click on button New to create the new configuration. Note that this new configuration is a 
completely new object that is not part of the SAP TM Standard but is owned by the 
customer or partner that implements it. 

 

 
Picture: The initial screen of the Component Configuration Editor 

 
 
3) On the following popups, specify a description for the new configuration as well as a 

package where to store it, e.g. as a local object or assign it to your customer/partner 
specific transportable package. If you assign the new Component Configuration to a 
transportable package you will be asked to specify a corresponding transport request. 
 

 
Picture: Specifying a description and a package for the new Component Configuration. 

 

https://[server]:[port]/sap/bc/webdynpro/sap/configure_component
https://ugaai9x.wdf.sap.corp:18562/sap/bc/webdynpro/sap/configure_component


SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

168 

168 

4) On the next popup specify the feeder class that shall be used for the new configuration 
and its related UIBB. For this example, we use a predefined feeder class for our new 
configuration: Class /BOFU/CL_FBI_GUIBB_LIST_ATS. 
 

 
Picture: Create the configuration and define its feeder class. 

 
5) On the same popup click on button Edit Parameters to configure further parameters of 

the configuration. The following parameters define the data source from where our new 
list configuration will take the information to be displayed. They define the parameters that 
will be used by the feeder class in this configuration. 
 

Business 
Object 

/SCMTMS/TOR The Freight Order BO. 

Node ZENH_ROOT_SUBNODE Our new subnode that was assigned to the 
Freight Order Root Node in step 1. 

 

 
Picture: Parameters to be used by the feeder class. 

  
Click on button OK to get to the next configuration step. 

 
6) In the next step further list elements and attributes are configured i.e. adding the columns 

to be displayed with the list and actions to be available on the list toolbar. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

169 

169 

 
Picture: Adding columns to the List UIBB Schema. 

 
For adding columns to the List UIBB navigate to the List UIBB Schema and click on 
button Column. On the following popup you will find all available attributes from the BO 
node that was assigned to this Component Configuration in step 5. Select the required 
fields to be added as columns and click on button OK. In the example we take over all 
fields available on the assigned BO node. 
 
In the List UIBB Schema table you can now see all assigned columns. Here you can now 
further maintain the Display Type (e.g. Text View, Input Field, Checkbox, etc.) and 
Header (column header text that will appear on the UI) for each column. These and 
further attributes of a selected column can also be configured in the section below the list: 
 

 
Picture: Specifying the attributes of a column. 

 
In this section of the Configuration Editor you can specify all available attributes that 
determine the behavior and appearance of the column selected in the list above. Besides 
the mentioned attributes e.g. Tooltips can be defined, F4-Search Helps assigned, etc. 
 

 
Picture: Adding Actions to the Toolbar Schema. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

170 

170 

For adding Actions to the Toolbar of the List UIBB navigate to the Toolbar Schema and 
click on button Toolbar Element. On the following popup you will find all available FBI 
Standard Actions (e.g. Create, Delete) and all Actions from the BO node that was 
assigned to this Component Configuration in step 5. Select the required Actions to be 
added as buttons in the Toolbar and click on button OK. In the example we just take over 
the two FBI Standard Actions Create and Delete. Other Actions assigned to the related 
BO node will be listed here as well and can be added the same way. 
 
In the Toolbar Schema table you can now see all assigned Actions. Here you can now 
further maintain the Display Type, Explanation Text, Text and Tooltip for each toolbar 
element. 
 

 
Picture: Specifying the attributes of a column. 

 
In this section of the Configuration Editor you can specify all available attributes that 
determine the behavior and appearance of the Toolbar Element selected in the list above. 
Besides the mentioned ones, you can e.g. a Hotkey, an Image Source for Icons to be 
assigned to a button, etc. 
 

7) Save the new Component Configuration for the List UIBB. 
 

 
 

With saving the new Component Configuration ZENH_WDCC_DEMO_LIST_UIBB it is 
now available to be integrated into the standard Freight Order UI. The next steps describe 
how to do this. 

 
8) For integrating the new configured UIBB into the Freight Order UI you can start the UI in 

configuration mode (sap-config-mode=X). Here you can use the Technical Help (context 
menu via right mouse button to identify the Start Component Configuration. In this 
example it is Component Configuration /SCMTMS/WDCC_FRE_ORDER. 
 

 
Picture: The Technical Help with links to Component Configurations. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

171 

171 

If there is already a Component Customizing for this Component Configuration, you can 
directly click on the link in the Technical Help popup (Start Component  Component 
Customizing). Otherwise you need to first of all create it as follows. 
 
In this case you can start the Configuration Editor in customizing mode via the following 
general link which has to be enhanced with information on server and port, depending on 
where you want to start the tool. 

 
https://[server]:[port]/sap/bc/webdynpro/sap/customize_component 
 
Example:  
https://ugaai9x.wdf.sap.corp:18562/sap/bc/webdynpro/sap/customize_component 
 

 
Picture: Creating a new Component Customizing. 

 
On the following popup specify a description for the new Component Customizing and 
click on button OK. Then assign the Component Customizing to a Transport Request if 
required. 

 
9) On the right side of the Configuration Editor click on tab Navigation to display the 

available pages of the UI. Select the Main Page in the list and navigate to the Overview 
Page Schema (Configuration /SCMTMS/WDCC_FRE_ORDER configures an Overview 
Page Component) on the right side of the configuration editor. 
 

 
Picture: Main Page selected. 

 
10) On the Overview Page Schema add a new List Component. To do this, click on button 

UIBB and select entry List Component. In the table with the Overview Page Schema 
elements you can then find a corresponding entry. Mark this entry in the table to display 
and specify the attributes of the new UIBB. 
 

 
Picture: Adding a new List Component to the Overview Page Schema. 

 

https://[server]:[port]/sap/bc/webdynpro/sap/customize_component
https://ugaai9x.wdf.sap.corp:18562/sap/bc/webdynpro/sap/customize_component


SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

172 

172 

11) Specify the attributes of the new List Component. For the example the following attributes 
are specified: 
 

Attribute Value 

Component FPM_LIST_UIBB_ATS 

Window Name LIST_WINDOW 

Configuration ID ZENH_WDCC_DEMO_LIST_UIBB 

Instance ID 1 

Title Enhancement Node Demo Data 

 

 
Picture: Specifying the attributes of the new List Component. 

 
12) Now switch to the Wire Schema. In this final step, we need to define where the new UIBB 

gets the data to be displayed from. This is done by declaring a so called wire which 
connects the new UIBB with the UI parts which already carry information of the current 
BO instance that is displayed. In our example, the new UIBB needs to know from which 
instance and which node of the Freight Order BO the data to be displayed is taken. 

 
Click on button Wire to add a new wire. Then maintain the attributes for the new wire as 
listed below (note: the correct wiring is essential to make the new UIBB work). 
 

 
Picture: Adding a new wire in the Wire Schema 

 
The following table contains the Wire Attributes and the corresponding values for the 
given example. In general, a wire has a target as well as source component and 
configuration. The target is our new List UIBB with its configuration that is based on the 
new sub node ZENH_SUBNODE. The source in this example is the initial screen of the 
Freight Order UI which carries the Freight Order number as the initial information. This 
source is based on the Root node of the Freight Order BO.  
 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

173 

173 

At runtime the Root node contains the instance of the Freight Order which is processed. 
Based on this instance, the wire allows navigation to the corresponding subnode defined 
in the target. For this the BOBF association between the Root node and subnode 
ZENH_SUBNODE is used. With this, the new List UIBB can now get the corresponding 
data from the sub node of the Freight Order instance. 
 

Attribute Value Comment 
Component FPM_LIST_UIBB_ATS The generic List UIBB provided by 

FPM, i.e. the target component of 
the wire. 

Configuration ID ZENH_WDCC_DEMO_LIST_UIBB The example configuration for the 
new List UIBB, i.e. the target 
configuration of the wire. 

Instance ID 1  

Source Component FPM_FORM_UIBB The source component of the wire. 
In this example it is a FORM_UIBB. 

Source Configuration 
Name 

/SCMTMS/WDCC_TOR_INIT_SCREEN The source configuration of the wire. 
In this example it is the configuration 
for the initial screen form of the 
Freight Order UI. 

Source Node 
Association 

ZENH_ROOT_SUBNODE This is the association that is defined 
between the node of the wire source 
and the node of the wire target. In 
this example it is the composition 
association between the Freight 
Order (TOR) Root node and our new 
subnode ZENH_SUBNODE. 

Port Type Collection  

Port Identifier CO  

Connector Class /BOFU/CL_FBI_CONNECTOR Provides basic functions to connect 
FPM, FBI and BOBF. 

 

 
Picture: Specifying the attributes of the new wire. 

  
13) Save your configuration. The new List UIBB with its configuration is now ready to be used 

on the Freight Order UI. The list is shown as a tab and allows displaying as well as editing 
instances of sub node ZENH_SUBNODE for a given Freight Order instance. 
 

 
Picture: The final List UIBB embedded in the Freight Order UI. 

 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

174 

174 

5.4.4 Adding a new Action to the main tool bar 

Adding a new action to the main tool bar of an FPM application works slightly different than 
adding an action to a component tool bar as shown in section 5.4.2. 
 
For the following first example let’s assume we have already added an enhancement action 
ZENH_MAINTOOLBAR_ACTION on the ROOT node of the Freight Order BO (TOR) that we 
would like to trigger from the main tool bar of the Freight Order UI. The coding for this action 
implementation could look as follows: 

 
METHOD /bobf/if_frw_action~execute. 

  DATA: lv_temp TYPE c. 

  MESSAGE i008(/scmtms/ui_messages) INTO lv_temp. 

  CALL METHOD /scmtms/cl_common_helper=>msg_helper_add_symsg 

    EXPORTING 

      iv_key      = /scmtms/if_tor_c=>sc_bo_key    " Instance Key 

      iv_node_key = /scmtms/if_tor_c=>sc_node-root " BO Key 

    CHANGING 

      co_message  = eo_message. " Current message object 

ENDMETHOD. 

 
1) Start the UI for displaying Freight Orders from e.g. the SAP user menu, set the 

customizing mode in the URL for the UI as described in section 5.3 and display an 
example Freight Order. 
 

 
Picture: The Main Toolbar of the Freight Order Display UI with its buttons. 

 
2) The component configuration /SCMTMS/WDCC_FRE_ORDER will be customized to add 

the new main toolbar action. If this component configuration has not yet been customized 
you first of all create a corresponding component customizing (see picture below) and 
then continue. 
 

 
Picture: Component Customizing for Configuration /SCMTMS/WDCC_FRE_ORDER. 

 
3) In the Configuration Editor first of all navigate to the Main Page and then on the right side 

of the Configuration Editor display the Toolbar Schema. In the table content of the 
Toolbar Schema you can find the Global Toolbar which contains the buttons and actions 
that you can see in the Main Toolbar of the Freight Order UI. Mark the Global Toolbar in 
the list.  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

175 

175 

 
Picture: Adding a button on the Global Toolbar of the Main Page. 

 
4) Now click on button Toolbar Element to add a new toolbar element. The popup that is 

displayed allows you to add our new button by clicking on the application-specific 
Function Button. Then click on button OK. 
 

 
Picture: Adding a new button. 

 
Here you could also add standard functions like Save, Cancel and Edit, Button Choices, 
Toggle Buttons, Dropdown List Boxes and Links. 

 
5) The new button will now be available in the Toolbar Schema. Mark the new entry in the 

list so that you can start specifying the attributes of the new button. Specify the following 
attribute values: 
 

Attribute Value 

Text Enhancement Main Toolbar Button 

Tool Tip An Enhancement Action on the main toolbar 

FPM Event ID ZENH_MAINTOOLBAR_ACTION 

Action Type Standard 

 
Moreover maintain the following Event Parameter: 
 

Parameter Name Parameter Value 

FBI_RAISED_BY_TOOLBAR X 

 
6) Save your configuration. The new button is now ready to be used on the Freight Order UI 

via its main tool bar. 
 

 
Picture: The new button on the main tool bar. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

176 

176 

With this first example the enhancement action will be triggered by the additional button on 
the Main Toolbar. As we have chosen the FPM Event ID to be identical with the action name, 
the execution of the action will be handled generically without any further coding required. 
 
In case you don’t want to relate the button to a BO action as shown in the first example, you 
can follow the second approach which allows you to implement arbitrary coding to be 
executed when clicking the related button on the UI. This works as follows: 
 
For each application configuration (e.g. /SCMTMS/FRE_ORDER) there is a FBI View 
available that follows the naming convention [application configuration name]_HTLB. For the 
example this is FBI View /SCMTMS/FRE_ORDER_HTLB. It is defined to handle the Toolbar 
of the application and the Exit Class defined there is called automatically. 
 
Instead of providing an action name as the FPM Event ID (see step 4 above) you can provide 
an arbitrary FPM Event ID (e.g. MyEventID) that will be handled by the Exit Class of the HTLB 
FBI View. In the Exit Class you can add coding to method ADAPT_EVENT to react on and 
handle the event. You can identify the corresponding Exit Class as follows: 
 
1) Start the UI for displaying Freight Orders from e.g. the SAP user menu and display the 

technical help as described in section 5.3. On the technical help you can identify the 
application configuration, in our example /SCMTMS/ FRE_ORDER. 
 

2) Start transaction SE84 and follow the path Repository Information System → Web 
Dynpro → Component Configuration. Enter Component Configuration name 
/SCMTMS/FRE_ORDER_HTLB in the input field Component Configuration on the right 
side. 
 

3) Press F8 to start the selection and then double click on the found entry. On the right side 
you can now see the general attributes of FBI View /SCMTMS/FRE_ORDER_HTLB. Click 
on button Display Configuration to display the details of the FBI View. 
 

4) On tab strip Header you can see the name of the relevant exit class in field Exit Interface 
Class. For the example this is class /SCMTMS/CL_UI_VIEWEXIT_TOR. 

 
In the standard implementation of the identified Exit Class method ADAPT_EVENT you can 
see how to react on your own FPM Event IDs. The FPM Event ID that was configured for the 
new button on the main tool bar will be available at runtime in method parameter 
IV_EVENTID. The coding can then e.g. look as follows: 
 
 CASE iv_eventid. 

    WHEN /scmtms/if_ui_cmn_c=>sc_action-cmn-show_plan_blkdet OR 

         /scmtms/if_ui_cmn_c=>sc_action-cmn-show_exec_blkdet OR 

         /scmtms/if_ui_cmn_c=>sc_action-cmn-show_inv_blkdet. 

      handle_show_blkdet( 

        EXPORTING 

          iv_eventid          = iv_eventid 

          ir_event_data       = ir_event_data 

          it_selected_rows    = it_selected_rows 

        CHANGING 

          cv_failed           = cv_failed ). 

*   React on your own Event ID here. 

    WHEN MyEventId. 

     " The coding that handles the event should be placed 

     " in a separate method of e.g. a local class (in case 

     " of customer extensions). 

      CALL METHOD MyEventIdHandler(). 

 

    WHEN OTHERS. 

 

  ENDCASE. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

177 

177 

5.4.5 Adding a new Parameter Action with a Popup 

In the last section we added an action to the main tool bar of an FPM application. In the 
following example, a parameter action is added that invokes a popup to enter the parameters 
of an action before executing the action. Moreover the example indicates how a Confirmation 
Popup for actions can be realized by configuring an OK and a Cancel button. 
 
Execute the following steps to create this example: 
 
1) Start the BOBF Enhancement Workbench (transaction /BOBF/CUST_UI) and create the 

following enhancement action on the Root node of the Freight Order Business Object 
(technical name TOR. See also section 3.3.6 for creating actions. 
 

Attribute Value 

Action Name ZENH_POPUP_PARAM_ACT 

Description Enh. Parameter Action for UI Popup Demo 

Implementing Class ZCL_ENH_A_POPUP_PARAM_ACT 

Parameter Structure ZENH_S_A_POPUP_PARAM_ACT 

Action Cardinality Multiple Node Instances 

Extensible Yes 

 
The example action parameter structure ZENH_S_A_POPUP_PARAM_ACT shall look as 
follows: 
 

Append Structure   
Name ZENH_S_A_POPUP_PARAM_ACT  

Description Enhancement Action Parameters  

Component Typing Method Component Type 
ZENH_COMMENT Types /SCMTMS/DESCRIPTION 

ZENH_WORKS_IND Types Boolean 

 
Make sure that you have defined an enhancement category for the new structure. Then 
save and activate the action parameter structure. 
 
The attributes of this structure will later be available to be placed on the popup. When 
executing the action via the UI, the popup will be displayed where you can enter 
corresponding values. In the example, we will configure an OK and a Cancel button that 
lets you execute or abort the execution of the action. 
 
Use transaction SE91 to create message class ZENH_MESS with the following 
messages: 
 

Message Message Short Text 

001 Yes, it works! &1 

002 No, it doesn’t work! &1 

 
The coding for the action implementation shall look as follows (example code to be for 
method EXECUTE of implementing class ZCL_ENH_A_POPUP_PARAM_ACT): 
 
METHOD /bobf/if_frw_action~execute. 

  FIELD-SYMBOLS: <fs_parameters> TYPE zenh_s_a_popup_param_act. 

 

  DATA: ls_msg       TYPE symsg, 

        lr_act_param TYPE REF TO /scmtms/s_tor_a_conf, 

        lv_temp      TYPE c. 

 

* take over action parameters 

  ASSIGN is_parameters->* TO <fs_parameters>. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

178 

178 

* prepare message text parameter 

  CLEAR ls_msg. 

  ls_msg-msgv1 = <fs_parameters>-zenh_comment. 

 

* use parameter ZENH_WORKS_IND 

  IF <fs_parameters>-zenh_works_ind = abap_true. 

    MESSAGE s001(zenh_mess) WITH ls_msg-msgv1 INTO lv_temp. 

  ELSE. 

    MESSAGE e002(zenh_mess) WITH ls_msg-msgv1 INTO lv_temp. 

  ENDIF. 

 

  CALL METHOD /scmtms/cl_common_helper=>msg_helper_add_symsg( 

    EXPORTING 

      iv_key      = /scmtms/if_tor_c=>sc_bo_key 

      iv_node_key = /scmtms/if_tor_c=>sc_node-root 

    CHANGING 

      co_message  = eo_message ). 

 

ENDMETHOD. 

 
2) Start the Web Dynpro ABAP Component Configuration Editor to create a new Component 

Configuration. As mentioned already in section 5.3, the editor can be started via the 
following general link which has to be enhanced with information on server and port, 
depending on where you want to start the tool. 

 
https://[server]:[port]/sap/bc/webdynpro/sap/configure_component 
 
Example:  
https://uscia9x.wdf.sap.corp:44352/sap/bc/webdynpro/sap/configure_component 
 

 
Picture: Creating a new Component Configuration. 

 
Enter a Component Name and a new Configuration ID. This new Component 
Configuration will define a From UIBB that will contain the action parameters as available 
input fields. 
 

Field Value Comment 

Component Name FPM_FORM_UIBB The new configuration shall 
represent a form which will 
contain data of the action 
parameter structure. 

Configuration ID ZENH_WDCC_POPUP_ACTION This will be the new 
configuration to be integrated 
in the Freight Order UI. 

 
Click on button New to create the new Component Configuration. 
 

3) On the following popup provide a description and click on button OK to continue. On the 
next popup specify the package where you want to store the new Component 
Configuration and click on button OK again. 
 
 
 

https://[server]:[port]/sap/bc/webdynpro/sap/configure_component
https://uscia9x.wdf.sap.corp:44352/sap/bc/webdynpro/sap/configure_component


SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

179 

179 

Field Value 

Description Enhancement Action with Popup Demo 

Package $TMP (or your own customer/partner specific package) 

 
A third popup will come up requesting you to provide a transport request. Choose a valid 
existing transport request or create a new one (can be done on the same popup) and 
click on button OK. 
 

4) Specify the FBI Feeder Class that shall be used for providing the data to the Form UIBB 
displayed on the new intended popup. 
 

 
Picture: Entering the Feeder Class. 

 
Choose Feeder Class /BOFU/CL_FBI_GUIBB_ACTPRM_FDR which represents a 
generic Action Parameter Feeder Class provided by the FBI framework. It makes use of 
the parameters defined for the action that will be assigned to trigger the new popup. The 
assignment of the action created in step 1 to the new Component Configuration is 
described in one of the next steps. Click on button Edit Parameters to get to the next 
step. 
 

5) Now specify the parameters that the Feeder Class shall take into consideration at 
runtime.  Enter the following values in the mentioned fields and then click on button OK. 
 

 
Picture: Specifying the Feeder Class Parameters. 

 

Field Value Comment 

Business Object /SCMTMS/TOR The Business Object that the 
action is assigned to. 

Node ROOT The node of the Business 
Object that the action is 
assigned to. 

Action ZENH_POPUP_PARAM_ACT The name of the action that 
will be executed and delivers 
the fields to be provided on 
the popup based on its 
action parameter structure. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

180 

180 

Action Parameter 
UI Structure 

ZENH_S_A_POPUP_PARAM_ACT The structure that serves as 
the UI structure for the action 
parameters (in this example 
it corresponds 1:1 to the 
Action Parameter Structure). 

 
6) In the Component Configuration Editor navigate to the Form UIBB Schema, click on 

button Element and choose option Add Group to add a new field group. 
 

 
Picture: Adding a new Group in the Form UIBB Schema. 

 
This group will contain the fields to be entered on the popup. In the attributes of the group 
enter the following value in field Group Title: 
 

Field Value 

Group Title Enhancement Parameter Action 

 
Moreover you can specify further attributes for this group. You can give it a Group Title 
(e.g. Enhancement Parameter Action) and you can specify the Group Type which 
influences the layout of the two fields added to the group. In this example the option Half 
Width, 1 Column has been chosen which will arrange the two fields in a single column. 
Other options e.g. allow arranging the fields in two columns and in one row. 
 

 
Picture: Specifying Attributes of the Group. 

  
7) Select the new group and click on button Child Element in the Form UIBB Schema and 

add the available fields to the group. As we specified the Action Parameter UI Structure to 
be identical with the Action Parameter Structure, the available fields for the UI correspond 
exactly to the Action Parameters (if that was not the case you would have to specify an 
Action Parameter UI Mapper Class in the Feeder Class Parameters). 
 

 
Picture: Adding new Group Elements. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

181 

181 

 
Picture: Adding fields to the group. 

 
Configure the following Attributes for the two added fields (this is the minimum set of 
attributes to be specified for this example but of course you can also specify further 
attributes like a Tooltip or specify a Search-Help for the corresponding field, etc.): 
 

Field Label Display Type 

ZENH_COMMENT Comment Input Field 

ZENH_WORKS_IND Flag whether it works or not Check Box 

 
8) Save the configuration for the new Form UIBB. With this step the definition of the popup 

to be displayed when executing the intended Action is finished.  In the next steps, the 
popup as well as the Action are integrated into the Freight Order UI.  
 

9) Start the editor for the Web Dynpro ABAP Component Configuration to add a new page 
to the Freight Order UI configuration /SCMTMS/WDCC_FRE_ORDER. As mentioned 
already in section 5.3, the editor can be started via the following general link which has to 
be enhanced with information on server and port, depending on where you want to start 
the tool. In this case we customize an already existing standard Component 
Configuration, i.e. to start the component customizing use the following kind of link (this 
time it’s “customize_component”): 

 
https://[server]:[port]/sap/bc/webdynpro/sap/customize_component 
 
Example:  
https://uscia9x.wdf.sap.corp:44352/sap/bc/webdynpro/sap/customize_component 
 
Here you can enter the Component Name and the Configuration ID of the Component 
Configuration to be customized. This new configuration will define a From UIBB that will 
contain the action parameters as available input fields. 
 

Field Value Comment 

Component Name FPM_OVP_COMPONENT  

Configuration ID /SCMTMS/WDCC_FRE_ORDER The standard Web Dynpro 
Component Configuration of 
the Freight Order UI. 

 
Click on button New in case you have not yet created a corresponding component 
customizing for the given Component Configuration. If this already exists you can 
continue by clicking on button Continue in Change Mode. 
 

 
Picture: Creating a new Component Customizing. 

 
 

https://[server]:[port]/sap/bc/webdynpro/sap/customize_component
https://uscia9x.wdf.sap.corp:44352/sap/bc/webdynpro/sap/customize_component


SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

182 

182 

10) On the following screen go to section Navigation on the left side of the screen, click on 
button New and chose option Dialog Box to add a new Dialog Box to the Freight Order 
UI. 
 

 
Picture: Adding a new Dialog Box. 

 
Then double click on the new entry for the Dialog Box in the Navigation List and specify 
the required attributes directly in the related list entry. Note that the system will default a 
Page ID and a Title. For this example overwrite it with the following values: 
 

Attribute Value 

Page ID ENH_PARAM_ACTION 

Title Demo Enhancement Parameter Action 

 

 
Picture: Specifying Dialog Box attributes in the Navigation List. 

 
11) Now specify further required attributes for the Dialog Box on the right side of the 

Component Configuration Editor (if you do not directly see the Attributes Screen on the 
left side of the Editor double click again on the entry for the new Dialog Box in the 
Navigation List). This step is especially interesting as here the set of buttons to be 
available on the dialog popup for the Parameter Action is defined. 
 

 
Picture: Specifying further attributes for the Dialog Box. 

 
 
 
 
 
 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

183 

183 

Attribute Value 

Dialog Name Enhancement Parameter Action 

Button Sets OK and Cancel (OK is default button) 

Tooltip for OK Execute the BOPF Action assigned to this popup 

Tooltip for Cancel Cancel the Action and close the popup 

Action Type Close Validation-Independent 

 
With the attribute Button Sets we have now specified what kind of buttons shall be 
available on the popup to trigger or cancel the related Action after having entered values 
in the input fields of the popup. In this example an OK and a Cancel button will be used 
where the OK button is the default button (i.e. it will have the focus when the popup is 
displayed). 
 

12) Navigate to the Preview of the newly added Dialog Box on the right side of the 
Component Configuration Editor. Here you should see that the system has added a 
section for the Dialog Box with the content below this section still empty. Double click on 
the section content under the section. In the lower right part of the Editor you can now 
specify required attributes that specify the content to be displayed on the Dialog Box, i.e. 
the Form UIBB with the two input fields created in the previous steps will now be 
assigned to the Dialog Box. 
 

Attribute Value 

Component FPM_FORM_UIBB 

Window Name FORM_WINDOW 

Configuration ID ZENH_WDCC_POPUP_ACTION 

Rendering Type Without Panel 

Title Enhancement Parameter Action 

 

 
Picture: Specifying the attributes for assigning the Form UIBB to the Dialog Box. 

 
13) Save the Component Customizing. With this step the popup for the Action is assigned to 

the Freight Order UI. Before it can actually be used, a few more things need to be 
configured as shown in the next steps. 
 

14) For the next step start the Component Configuration Editor to customize (remember 
“customize_component” in the URL for starting the editor) the Application Controller 
Configuration /SCMTMS/WDCC_APPCC. Here the BOPF Action implemented in the first 
steps is finally assigned to the popup that was configured in the previous steps. 

 
 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

184 

184 

 
Picture: Creating a new Component Customizing for the Application Controller. 

 

Field Value Comment 

Component Name /BOFU/WDC_FBI_CONTROLLER  

Configuration ID /SCMTMS/WDCC_FRE_ORDER The standard SAP TM 
Application Controller 
Configuration. 

 
Click on button New to create a new Component Customizing for the Application 
Controller or continue with clicking on button Continue in Change Mode in case a 
corresponding Component Customizing already exists. 

 
15) Open section Component-Defined. In its subsection Configuration Context mark the Tree 

List entry context and click the right mouse button to open the context menu for this entry. 
Choose Add  actParamConfig to add a new Action Parameter Configuration in the 
Application Controller. 
 

 
Picture: Adding a new Action Parameter Configuration in the Application Controller. 

 
Specify the following attributes: 
 

Attribute Value 

cfgIndex A valid number representing the latest entry in the list (Final flag is 
set automatically by the system). 

Business Object /SCMTMS/TOR (Final flag not set) 

Node  ROOT (Final flag not set) 

Action ZENH_POPUP_PARAM_ACT (Final flag not set) 

Dialog Box ID ENH_PARAM_ACTION (Final flag not set) 

 
16) Click on button Save in the Component Customizing Tool bar to save the Application 

Controller customizing. 
 
17) In the final step add a button to the main toolbar of the Freight Order UI as shown in the 

previous section 5.4.4. Assign the parameter action ZENH_POPUP_PARAM_ACT to it 
that we created in the section. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

185 

185 

The resulting popup that comes up when executing the new action can be seen on the 
following picture. The popup comes up after clicking on the button added with step 17. You 
can then enter values in the input fields and click on button OK to start the execution of the 
action with the entered values or click on button Cancel to abort the execution. 
 

 
Picture: The final Parameter Action Popup in an example Freight Order. 

 
With the input in the example shown in the picture above, the message that is issued looks as 
follows:  
 
 

5.4.6 Accessing and displaying data from external sources 

The following use case is based on a real world scenario where a customer wanted to display 
external data on the Freight Order UI, i.e. the data to be displayed does comes from a data 
source outside the TM application / system. 
 
The Use Case looks as follows: On the Document Reference tab of the Freight Order UI 
shipment numbers (originally coming from ERP) associated with the displayed Freight Order 
are shown. For these shipments some further details shall be read from ERP and displayed 
along with the Freight Order information. In the specific customer example the serial numbers 
for the products assigned to the shipments shall be displayed. The serial numbers are not 
known on TM side but need to be read from the shipments in ERP. 
 
1) To simplify this example a bit and to rather “simulate” such an external data source we 

simply create the following database table that serves as our external data source and 
can be populated with example data: Start transaction SE11 and create data base table 
ZENH_D_SERNUM as follows: 
 
1. On the initial screen of transaction SE11 enter the table name ZENH_D_SERNUM in 

field Database Table and click on button Create. 
 

2. On the next screen enter the following short description for the new table: Database 
Table for simulating access to external data. 
 

3. On tab strip Delivery and Maintenance specify Delivery Class A (Application Table – 
master and transactional data) and specify Display Maintenance Allowed in field Data 
Browser / Table View Maintenance. 
 

4. On tab strip Fields enter the following fields that make up our “external data source”: 
 

 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

186 

186 

Field Key Initial 
Values 

Data Type Short 
Description 

MANDT Yes Yes MANDT Client 

BTD_ID Yes Yes /SCMTMS/BTD_ID Bus. Trans. 
Document ID 

SERNUM_IDX Yes Yes /SCMTMS/INTEGER_VALUE Integer Value 

SERNUM   /SCMTMS/STRING String 

INUSE   BOOLEAN Boolean 
Variable (X = 
True, - = False, 
Space = 
Unknown) 

WEIGHT   /SCMTMS/QUANTITY Quantity 

WEIGHT_UOM   /SCMTMS/DIM_WEIGHT_WT_UOM Weight Unit of 
Measure for 
Dimensional 
Weight 

 
5. On tab strip Currency / Quantity Fields specify for field WEIGHT the reference 

table ZENH_D_SERNUM, reference field WEIGHT_UOM. 
 

6. Maintain enhancement category Can Be Enhanced (deep) under Extras → 
Enhancement Category. 

 
7. Click on button Technical Settings and maintain the technical settings of the new 

database table as follows: 
 

 Data class     : APPL1 
 

 Size Category    : 4 
 

 Buffering not allowed  : Yes 
 

8. Finally save and activate the new database table. 
 
The following steps illustrate how to realize an additional tab strip on the standard Freight 
Order UI that contains a list with the shipments and related serial numbers.  
 
2) Display FBI View /SCMTMS/TOR_DOCREF as follows: 

 

 Start transaction SE84 and choose Web Dynpro. 
 

 Double click on Component Configuration. 
 

 Enter /SCMTMS/TOR_DOCREF in field Component Configuration and press F8. 
 

 Double click on the found entry on the next screen and here click on button Start 
Configurator. 

 

 Click on button Continue in Display Mode. 
 

3) On the FBI View you can find the defined UI Structure, Mapper Class and Exit Interface 
class used for the tab strip Document Reference tab of the Freight Order UI. Create a 
copy of all three objects as follows: 
 

 Create a copy of Mapper Class /SCMTMS/CL_UI_CONVERSION_TOR with 
transaction SE24 and name it ZCL_ENH_UI_CONVERSION_SERNUM. Save and 
activate the copy. 
 

 Create a copy of Exit Interface Class /SCMTMS/CL_UI_VIEWEXIT_TOR with 
transaction SE24 and name it ZCL_ENH_UI_VIEWEXIT_SERNUM. Save and 
activate the copy. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

187 

187 

 Create a copy of Node UI structure /SCMTMS/S_UI_CMN_DOCREF with transaction 
SE11 and name it ZENH_S_UI_SERNUM. Save and activate the copy 

 
4) Add all external fields to the Node UI structure ZENH_S_UI_SERNUM that shall be read 

and displayed from the external data source, i.e. in the example this would be all fields 
that we have already used to define the database table in step 1, except the fields 
MANDT and BTD_ID. 
 

5) Create a new FBI View ZENH_SERNUM: Display FBI View /SCMTMS/TOR_DOCREF as 
described in step 2.  

 

 On the first screen make sure that you specify the Component Name as 
/BOFU/FBI_VIEW (already specified after displaying the mentioned standard FBI 
View). Clear field Configuration ID and enter ZENH_SERNUM as the name for the 
new FBI View. 
 

 
Picture: Creating a new FBI View. 

 

 Click on button New to start creating the new FBI View. On the Header tab of the 
following screen enter the following data: 
 

Field Value 

Business Object /SCMTMS/TOR 

Node DOCREFERENCE 

Node UI Structure ZENH_S_UI_SERNUM 

Mapper Class ZCL_ENH_UI_CONVERSION_SERNUM 

Exit Interface Class ZCL_ENH_UI_VIEWEXIT_SERNUM 

 

 
Picture: Specifying the required header properties of the FBI View. 

 

 Click on button Save. 
 
6) Section 5.4.3 described already how to add a new List UIBB to the Freight Order UI. We 

now create another List UIBB that will carry the external data. Start the Component 
Configurator and create a corresponding Component Configuration for the List UIBB: 
 

 
Picture: Creating the Component Configuration for the List UIBB. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

188 

188 

Field Value 

Component Name FPM_LIST_UIBB_ATS 

Configuration ID ZENH_WDCC_SERNUM 

 

 Use Feeder Class /BOFU/CL_FBI_GUIBB_LIST_ATS for this Component 
Configuration. In the Feeder Class Parameters assign FBI View ZENH_SERNUM that 
we have created in step 5 before. 
 

 
Picture: Assigning Feeder Class and FBI View. 

 

 Configure the columns of the List UIBB. The fields of the new Node UI Structure 
ZENH_S_UI_SERNUM are all available for representing columns in the new list. 
Configure them all correspondingly and save the List UIBB configuration. 
 

 
Picture: The configured List UIBB in the preview. 

 

 Save the Component Configuration for the new List UIBB. 
 

7) Start the Configuration Editor in customizing mode for the standard Component 
Configuration /SCMTMS/WDCC_FRE_ORDER and add the new List UIBB. First of all 
add the new List UIBB on the Overview Page Schema as shown in the following picture. 
 

 
Picture: Adding the new List UIBB (as customizing) to the standard UI.  

 
Specify the following attributes for the added List UIBB: 
 
 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

189 

189 

Field Value 

Component FPM_LIST_UIBB_ATS 

Window Name LIST_WINDOW 

Configuration ID ZENH_WDCC_SERNUM 

Title Demo Enh. List with access to external data 

 

 
Picture: The attributes for the new List UIBB. 

 
8) On Wire Schema add a new Wire to connect the new List UIBB with the standard UI. 

Specify the following attributes for the Wire: 
 

Field Value 

Component FPM_LIST_UIBB_ATS 

Configuration Name ZENH_WDCC_SERNUM 

Source Component FPM_FORM_UIBB 

Source Configuration 
Name 

/SCMTMS/WDCC_TOR_INIT_SCREEN 

Port Type Collection 

Port Identifier CO 

Connector Class /BOFU/CL_FBI_CONNECTOR 

Source Node Association DOCREFERENCE 

 

 
Picture: The attributes for the required Wire. 

 
9) Save the customizing for Component Configuration /SCMTMS/WDCC_FRE_ORDER. 

With this step we have now added everything in the Freight Order UI to display the 
external data. Now a bit coding is required to read, prepare and get the external data 
displayed correctly on the new List UIBB. 
 

10) In method BUILD_MAP_TABLE of class ZCL_ENH_UI_CONVERSION_SERNUM add 
the following lines of code at the beginning of the method implementation. The member 
variable MV_CALL_EXIT is set to true. At runtime this setting will force the application to 
call method CALL_EXIT_METHOD. 
 

METHOD build_map_table. 

 

  DATA: 

    ls_map_data_ext TYPE ts_map_data_ext. 

 

  SET EXTENDED CHECK OFF. 

 

* call exit method where the extraction of the external data 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

190 

190 

* will take place. 

  mv_call_exit = abap_true. 

 

  CASE iv_ui_struct. 

… 

  ENDCASE. 

 

ENDMETHOD. 

 
11) In method CALL_EXIT_METHOD of class ZCL_ENH_UI_CONVERSION_SERNUM add 

the following lines of code at the beginning of the CASE statement: 
 
METHOD call_exit_meth. 

 

  CASE mv_ui_struct. 

 

    WHEN 'ZENH_S_UI_SERNUM'. 

      CALL METHOD zcl_enh_sernum_ext_access=>read_serial_numbers 

        CHANGING 

          ct_ui_data = ct_ui_data. 

 

    WHEN '/SCMTMS/S_UI_TOR_ITEM'          OR 
… 

  ENDCASE. 

 

ENDMETHOD. 

 
At runtime when the new UI structure ZENH_S_UI_SERNUM is used, a method of an 
external class is called that contains the coding to read data from the external data 
source.  
 
When the method is called, the changing parameter CT_UI_DATA contains first of all the 
data of the Document Reference Tab of the Freight Order UI (remember that we have 
assigned /SCMTMS/TOR as the source BO and DOCREFERENCE as the source node 
in the involved FBI View ZENH_SERNUM. 
 

12) Create a simple static class ZCL_ENH_SERNUM_EXT_ACCESS via transaction SE24 
with a method READ_SERIAL_NUMBERS. The method shall have a changing parameter 
CT_UI_DATA of type ANY_TABLE. Within this method, the data from the external data 
source is read and used to rebuild and redefine the content of the initial data in 
CT_UI_DATA that will then be displayed in the new List UIBB that was added. The 
example coding for method READ_SERIAL_NUMBERS looks as follows: 
 
METHOD read_serial_numbers. 

* declarations 

  TYPES: BEGIN OF ls_btd_id_range, 

           sign   TYPE ddsign, 

           option TYPE ddoption, 

           low    TYPE /scmtms/btd_id, 

           high   TYPE /scmtms/btd_id. 

  TYPES: END OF ls_btd_id_range. 

  TYPES: lt_btd_id_range TYPE TABLE OF ls_btd_id_range. 

 

  DATA: lv_component_bo            TYPE string, 

        lv_component_ui            TYPE string, 

        ls_sernum                  TYPE zenh_s_sernum, 

        lt_sernum                  TYPE TABLE OF zenh_s_sernum, 

        ls_btd_id                  TYPE ls_btd_id_range, 

        lt_btd_id                  TYPE lt_btd_id_range, 

        ls_sernum_ui               TYPE zenh_s_ui_sernum, 

        lt_sernum_ui               TYPE TABLE OF zenh_s_ui_sernum, 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

191 

191 

        ls_sernum_data             TYPE REF TO data. 

 

  FIELD-SYMBOLS:  

        <fs_ui_data>         TYPE any, 

        <fs_btd_tco>         TYPE /scmtms/btd_type_code, 

        <fs_btd_id>          TYPE /scmtms/btd_id, 

        <fs_btd_date>        TYPE  /scmtms/btd_date, 

        <fs_btd_issuer>      TYPE /scmtms/btd_issuingparty_name, 

        <fs_btditem_tco>     TYPE /scmtms/btd_item_typecode, 

        <fs_btditem_id>      TYPE /scmtms/btd_item_id, 

        <fs_btd_tco_txt>     TYPE /scmtms/description_s, 

        <fs_btditem_tco_txt> TYPE /scmtms/description_s, 

        <fs_sernum>          TYPE zenh_s_sernum, 

        <fs_sernum_ui>       TYPE zenh_s_ui_sernum, 

        <fs_key>             TYPE /bobf/conf_key. 

 

  CLEAR: ls_btd_id, 

         lt_btd_id. 

 

* collect all relevant BTD IDs to be used for 

* accessing external data 

  LOOP AT ct_ui_data ASSIGNING <fs_ui_data>. 

    ASSIGN COMPONENT 'BTD_TCO' OF STRUCTURE <fs_ui_data> 

                  TO <fs_btd_tco>. 

    IF <fs_btd_tco> = 'I001'. 

      ASSIGN COMPONENT 'BTD_ID' OF STRUCTURE <fs_ui_data> 

                    TO <fs_btd_id>. 

      ls_btd_id-option = 'EQ'. 

      ls_btd_id-sign   = 'I'. 

      ls_btd_id-low    = <fs_btd_id>. 

      APPEND ls_btd_id TO lt_btd_id. 

    ENDIF. 

  ENDLOOP. 

 

* read the data from the external source 

* Example: A Select statement to access our “Simulation Table” 

  SELECT btd_id 

         sernum_idx 

         sernum 

         inuse 

         weight 

         weight_uom 

    FROM zenh_d_sernum 

    INTO CORRESPONDING FIELDS OF TABLE lt_sernum 

   WHERE btd_id IN lt_btd_id. 

 

* take over the data into the TM UI structure 

  IF sy-subrc = 0. 

    CLEAR: ls_sernum_ui, 

           lt_sernum_ui. 

 

*   create a table with the complete UI information, including the 

*   keys of the original entries from DOCREF. 

    LOOP AT ct_ui_data ASSIGNING <fs_ui_data>. 

      ASSIGN COMPONENT 'KEY' OF STRUCTURE <fs_ui_data> 

                                       TO <fs_key>. 

      ASSIGN COMPONENT 'BTD_ID' OF STRUCTURE <fs_ui_data> 

                    TO <fs_btd_id>. 

      ASSIGN COMPONENT 'BTD_TCO' OF STRUCTURE <fs_ui_data> 

                    TO <fs_btd_tco>. 

      ASSIGN COMPONENT 'BTD_DATE' OF  STRUCTURE <fs_ui_data> 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

192 

192 

                    TO <fs_btd_date>. 

      ASSIGN COMPONENT 'BTD_ISSUER' OF  STRUCTURE <fs_ui_data> 

                    TO <fs_btd_issuer>. 

      ASSIGN COMPONENT 'BTDITEM_TCO' OF  STRUCTURE <fs_ui_data> 

                    TO <fs_btditem_tco>. 

      ASSIGN COMPONENT 'BTDITEM_ID' OF  STRUCTURE <fs_ui_data> 

                    TO <fs_btditem_id>. 

      ASSIGN COMPONENT 'BTD_TCO_TXT' OF STRUCTURE <fs_ui_data> 

                    TO <fs_btd_tco_txt>. 

      ASSIGN COMPONENT 'BTDITEM_TCO_TXT' OF STRUCTURE <fs_ui_data> 

                    TO <fs_btditem_tco_txt>. 

      LOOP AT lt_sernum ASSIGNING <fs_sernum> 

        WHERE btd_id = <fs_btd_id>. 

        ls_sernum_ui-key         = <fs_key>. 

        ls_sernum_ui-btd_id      = <fs_btd_id>. 

        ls_sernum_ui-btd_tco     = <fs_btd_tco>. 

        ls_sernum_ui-btd_date    = <fs_btd_date>. 

        ls_sernum_ui-btd_issuer  = <fs_btd_issuer>. 

        ls_sernum_ui-btditem_tco = <fs_btditem_tco>. 

        ls_sernum_ui-btditem_id  = <fs_btditem_id>. 

        ls_sernum_ui-btd_tco_txt = <fs_btd_tco_txt>. 

        ls_sernum_ui-btd_tco_txt = <fs_btd_tco_txt>. 

        ls_sernum_ui-sernum_idx  = <fs_sernum>-sernum_idx. 

        ls_sernum_ui-sernum      = <fs_sernum>-sernum. 

        ls_sernum_ui-inuse       = <fs_sernum>-inuse. 

        ls_sernum_ui-weight      = <fs_sernum>-weight. 

        ls_sernum_ui-weight_uom  = <fs_sernum>-weight_uom. 

        APPEND ls_sernum_ui TO lt_sernum_ui. 

      ENDLOOP. 

    ENDLOOP. 

 

*   transfer the UI data to be passed to the List  

*   UIBB into CT_UI_DATA 

    IF NOT lt_sernum IS INITIAL. 

      CLEAR ct_ui_data. 

      CREATE DATA ls_sernum_data TYPE zenh_s_ui_sernum. 

      ASSIGN ls_sernum_data->* TO <fs_ui_data>. 

      LOOP AT lt_sernum_ui ASSIGNING <fs_sernum_ui>. 

        MOVE-CORRESPONDING <fs_sernum_ui> TO <fs_ui_data>. 

        INSERT <fs_ui_data> INTO TABLE ct_ui_data. 

      ENDLOOP. 

    ENDIF. 

 

  ENDIF. 

 

ENDMETHOD. 

 
The coding does the following at runtime. From the UI data in CT_UI_DATA (which first of 
all just contains the same data as available on the Document Reference tab) those 
entries are filtered out for which serial numbers shall be read from the external data 
source. In the example, this shall e.g. only happen for those document references that 
represent a Shipment, i.e. BTD_TCO = I001 (this depends of course on the customizing 
for Business Transaction Document Type codes). 
 
For the relevant documents a SELECT statement reads the serial number from the 
external data source which is in the example case the database table that we created in 
step 1. The result of this SELECT statement will then be used to rebuild the content of 
changing parameter CT_UI_DATA to finally contain the list of relevant documents with 
their related serial numbers. This modified data will then be provided to the new List UIBB 
that was added to contain the serial number information. So the new List UIBB combines 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

193 

193 

now a set of attributes that are filled from standard BO node DOCREFERENCE and 
another set of attributes that get their content from the external data source. 
 
Note: If data from external data sources shall be displayed within the TM UI please 
always make sure that the access to this external data source is implemented with the 
highest performance possible. In real implementations of such a use case you should 
also consider a buffer mechanism for the external data that only reads data again from 
the external data source if really necessary. 

 
13) For testing the example create a Freight Order (or use an existing one) and first of all 

enter a list entry on tab Document Reference (you may have to make this tab visible first 
of all via the personalization of the Freight Order UI). Then create an entry in Database 
Table ZENH_D_SERNUM that was created in step 1 with attribute BTD_ID filled with the 
same Document ID as for the entry on tab Document Reference (this is the link between 
the BO node entry and the external data source entry). An example of the final new List 
UIBB on the Freight Order UI then looks as follows: 
 

 
Picture: The new List UIBB with example data from the external data source. 

 

5.4.7 Building a simple new User Interface 
As SAP Transportation Management uses the Floor Plan Manager for Web Dynpro ABAP 
building a user interface is based on a standard technology which is available in SAP 
NetWeaver. For details on FPM and how to build user interfaces with it, please also refer to 
the corresponding SAP NetWeaver documentation under the following link: 
 
http://help.sap.com/saphelp_nw73/helpdata/en/fc/182711c34a4684a7c0214b42554514/fr
ameset.htm 
 
Further information can also be found in the SAP Community Network under the following link 
(search there for FPM): http://scn.sap.com/welcome 
 
To connect FPM build user interfaces with an application, so called Feeder Classes are used. 
Their implementation is based on a predefined interface definition providing all necessary 
methods and corresponding signatures in order to standardize the communication between 
the application and the GUIBBs. Some examples: 
 

Interface Comment 

IF_FPM_GUIBB_FORM Interface for FORM components. 

IF_FPM_GUIBB_LIST Interface for LIST components 

IF_FPM_GUIBB_SEARCH Interface for SEARCH components 

IF_FPM_GUIBB_TREE Interface for TREE components 

 
Method GET_DEFINITION of a Feeder Class defines the field catalog of the component 
(GUIBB). At runtime, method GET_DATA supplies the component with data from the 
application. 
 
SAP Transportation Management uses FBI (Floor Plan Manager BOPF Integration) to 
connect the FPM user interface with the application which is based on BOPF business 
objects and related business logic. Instead of having to implement individual Feeder Classes, 

http://help.sap.com/saphelp_nw73/helpdata/en/fc/182711c34a4684a7c0214b42554514/frameset.htm
http://help.sap.com/saphelp_nw73/helpdata/en/fc/182711c34a4684a7c0214b42554514/frameset.htm
http://scn.sap.com/welcome


SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

194 

194 

FBI provides a list of already implemented (generic) Feeder Classes that can be reused to 
connect a FPM user interface with the BOPF based application.  
 
These available generic FBI Feeder Classes allow creating a new UI on an existing BOPF 
business object without having to implement any own coding (of course there might be UIs 
with a higher complexity which require coding e.g. in an Exit Class of an involved FBI View). 
 
The following example shows how to build a small and simple UI on top of the Freight Order 
BO (/SCMTMS/TOR) from scratch. Don’t be scared about the number of steps. The intention 
is to show a variety of different configuration aspects for realizing even specific and useful 
details. This will help to understand the configuration possibilities from scratch. 
 
1) Start transaction SE80, navigate e.g. to your local objects (we will store the example in 

the local package $TMP) and create a new Web Dynpro Application with the following 
parameters: 
  

 
Picture: Creating a new Web Dynpro Application in SE80. 

 

Field Value 

Application ZENH_TOR_UI 

Description Enhancement Demo UI 

Component FPM_OVP_COMPONENT 

Interface View FPM_WINDOW 

Plug Name DEFAULT 

 
Save the mew Web Dynpro Application and assign it to your preferred package (in this 
example we simply use package $TMP). 
 

2) Create an Application Configuration for the new Web Dynpro Application as follows. Click 
the right mouse button on the Web Dynpro Application in SE80 and choose option 
Create/Change Configuration from the context menu. 

 
Picture: Creating an Application Configuration. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

195 

195 

The Configuration Editor will come up in a browser window. Specify the following 
Application Name and Configuration ID and then click on button New: 
 

 
Picture: Creating the Application Configuration. 

 

Field Value 

Application Name ZENH_TOR_UI 

Configuration ID ZENH_TOR_UI 

 
On the following popups specify a description and a package where to store the 
Application Configuration, e.g. package $TMP. In case you want to transport this demo 
UI, assign it to a package that will request you with each relevant step to specify a 
transport request. 
 

Field Value 

Description Enhancement Demo UI for TOR BO 

Package $TMP (or your own package) 

 
3) On the following screen open section Assign Web Dynpro Component. Here you can find 

an entry for your Application Configuration. Mark it and click on button Assign 
Configuration Name to specify a corresponding Configuration ID on the following popup. 
With this step we assign a Web Dynpro Component Configuration (WDCC) to the 
Application Configuration that will carry all the content of the new UI. Enter the following 
Configuration ID: 
 

 
Picture: Assigning and creating a Configuration for the Application. 

  

Field Value 

Component Usage ZENH_TOR_UI (defaulted) 

Component FPM_OVP_COMPONENT (defaulted) 

Implementation FPM_OVP_COMPONENT (defaulted) 

Configuration ZENH_WDCC_TOR_UI 

 
The Configuration Name ZENH_WDCC_TOR_UI is now assigned to the Application 
Configuration but does not yet exist. Click on the Configuration Name in the related 
column to create it (see also picture above). The Configuration Editor will come up in a 
browser window. Enter the following data and click on button New to create the 
Component Configuration: 
 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

196 

196 

Field Value 

Component Name FPM_OVP_COMPONENT 

Configuration ID ZENH_WDCC_TOR_UI 

 

 
Picture: Creating the Component Configuration. 

 
As always, on the following popups specify a description and a package where to store 
the Component Configuration (which represents the Application Configuration). 
 

Field Value 

Description Enhancement Demo UI Application Configuration 

Package $TMP (or your own package) 

  
4) In the Component Configuration Editor open section General Settings. Click on button 

Floorplan Settings and select option Application Controller Settings. On the following 
popup enter the following settings and click on button Ok: 

 
Picture: Specifying the Application Controller Settings. 

 

Field Value 

Web Dynpro Component /BOFU/WDC_FBI_CONTROLLER 

Configuration Name /SCMTMS/WDCC_APPCC 

 

 
Picture: Application-Specific Parameters. 

 
5) On the right side of the Component Configuration Editor navigate to section Navigation. In 

the displayed list, the system will already default an entry for a Main Page. Click on button 
New, choose option Initial Screen and specify the following parameters for this new page: 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

197 

197 

Field Value 

Page ID INIT 

Page Type Initial Page 

Title Enh. Demo UI Initial Screen 

 
For the Main Page entry in the list specify the following parameters: 
 

Field Value 

Page ID MAIN 

Page Type Main Page 

Title Enh. Demo UI Main Screen 

 

 
Picture: Defining the Initial Screen and the Main Page. 

 
6) On the left side of the Component Configuration Editor double click on the list entry for 

the Initial Screen. Now navigate to the related Overview Page Schema. Here you should 
now find a section SECTION_1. Select it in the list, display its attributes and make sure 
that it has the following settings: 
 

Field Value 

Section ID SECTION_1 

Layout Type One Column Layout (Standard Layout) 

 
Now add a new Form UIBB as a subcomponent of the displayed SECTION_1. For this 
click on button UIBB and choose option Form Component to add a new Form UIBB to the 
Initial Screen of the new UI. 
 

 
Picture: Adding a new Form UIBB to the Initial Screen. 

 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

198 

198 

Field Value 

Component FPM_FORM_UIBB 

Window Name FORM_WINDOW 

Configuration ID ZENH_WDCC_TOR_UI_ALTKEY 

 
Maintain the attributes for the new Form UIBB and then save the Component 
Configuration. As you can see in the message list below, the current Component 
Configuration is saved but the new one (ZENH_WDCC_TOR_UI_ALTKEY) we just 
created does not yet exist. So we have to create it in the next step. 
 

 
Picture: Messages after Save. 

 
7) Open the Preview section. Here you can find the Form UIBB and its Configuration Name. 

When you move over this Form UIBB with the mouse you should see the “wrench” icon. 
Click on this icon to start creating the Component Configuration for the Form UIBB 
(Alternative: Click on button Configure UIBB in the Overview Page Schema). 
 

 
Picture: The new Component Configuration (not yet created) in the Preview. 

 

 
Picture: Creating the new Component Configuration 

 
Specify the following data and click on button New to create the Component 
Configuration: 
 

Field Value 

Configuration Name FPM_FORM_UIBB 

Configuration ID ZENH_WDCC_TOR_UI_ALTKEY 

 
On the following popups specify a description and a package where to store the 
Component Configuration (which represents the content for the initial screen). 
 

Field Value 

Description Enhancement Demo UI Alternative Key Configuration 

Package $TMP (or your own package) 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

199 

199 

8) Enter class /BOFU/CL_FBI_GUIBB_ALTKEY_FDR as the feeder class. Then click on 
button Edit Parameters and maintain the following attributes. Afterwards click on button 
Ok. 
 

Field Value 

Business Object  /SCMTMS/TOR 

Node ROOT 

Alternative Key TOR_ID 

 

  
Picture: Specifying the Feeder Class and its parameters. 

 
Navigate to the Form UIBB Schema, click on button Element and add a new Group with 
title Document Number. Then select the new group in the list, click on button Child 
Elements and from the list of available fields add field TOR_ID to the group. Maintain the 
following attributes for the field: 
 

Field Value 

Field Name TOR_ID  Is defaulted and cannot be changed. 

Label Visibility Is visible 

Display Type Input Field 

Label Document 

FPM Event ID FPM_LEAVE_INITIAL_SCREEN() This will allow hitting 
ENTER in the field instead of having to click on button 
Continue to get to the main screen. 

 

 
Picture: The final configuration of the Initial Screen. 

 
Check and save this Component Configuration. Then navigate back to component 
configuration ZENH_WDCC_TOR_UI. This can be achieved by simply clicking the 
corresponding link in the header section of the Component Configuration Editor. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

200 

200 

9) Add a second Form UIBB as a subcomponent of SECTION_1 for the Initial Screen. For 
this click again on button UIBB and choose option Form Component to add a new Form 
UIBB to the Initial Screen of the new UI. Specify the following attributes: 
 

Field Value 

Component FPM_FORM_UIBB_GL2 

Window Name FORM_WINDOW 

Configuration ID ZENH_WDCC_TOR_UI_INIT 

Sequence Index 2 

 

 
Picture: Adding a second Form UIBB to the Initial Screen. 

 
Again you can find the new Form UIBB already in the Preview but its configuration does 
not yet exist and is now created just like the first Form UIBB in step 7). So navigate to the 
Preview section and click on the “wrench” icon for the second Form UIBB to create it. On 
the entry screen of the Component Configuration Editor enter the following data and then 
click on button New: 
 

Field Value 

Component Name FPM_FORM_UIBB_GL2 

Configuration ID ZENH_WDCC_TOR_UI_INIT 

 
On the following popups specify a description and a package where to store the 
Component Configuration (which represents the Bootstrap configuration for the new UI). 
 

Field Value 

Description Enh. Demo UI Bootstrap Configuration 

Package $TMP (or your own package) 

 
10) Enter class /BOFU/CL_FBI_GUIBB_BOOTSTRAP as the feeder class. Click on button 

Edit Parameters and specify the following attributes. Afterwards click on button Ok. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

201 

201 

 
Picture: Specifying the Feeder Class and its parameters. 

 

Field Value 

Business Object  /SCMTMS/TOR 

Node ROOT 

URL Key Provider /BOFU/CL_FBI_URL_KEYPROVIDER 

Preselection Key Provider /BOFU/CL_FBI_PRSEL_KEYPROVIDER 

 
Check and save this configuration. Then navigate back to component configuration 
ZENH_WDCC_TOR_UI. 
 

11) Navigate to the Wire Schema, create a new Wire by clicking on button Wire and specify 
the following attributes with corresponding values: 
 

 
Picture: Creating a new Wire on the Wire Schema. 

 

Field Value 

Component FPM_FORM_UIBB_GL2 

Configuration Name ZENH_WDCC_TOR_UI_INIT 

Source Component FPM_FORM_UIBB_GL2 

Source Configuration Name ZENH_WDCC_TOR_UI_ALTKEY 

Port Type Collection 

Port Identifier CO 

Connector Class /BOFU/CL_FBI_CONNECTOR 

 

 
Picture: The attributes for the first Wire. 

 
Click again on button Wire to specify a second required wire just like shown before. 
Specify the following attributes with corresponding values: 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

202 

202 

Field Value 

Component /BOFU/WDC_FBI_CONTROLLER 

Configuration Name /SCMTMS/WDCC_APPCC 

Source Component FPM_FORM_UIBB_GL2 

Source Configuration Name ZENH_WDCC_TOR_UI_INIT 

Port Type Collection 

Port Identifier CO 

Connector Class /BOFU/CL_FBI_CONNECTOR 

 
With this step we have finalized the general Application Configuration, the Bootstrap 
Configuration for the new UI as well as its Initial Screen Configuration. On the initial 
screen you will be able to enter a document number to be displayed. In the next steps we 
will add content to the Main Page where the data of the corresponding document will be 
shown. 
 

12) On the left side of the Component Configuration Editor double click on the list entry for 
the Main Page (in section Navigation). Navigate to the related Overview Page Schema. 
Here you should now find a section SECTION_1 associated with the Main Page. Select it 
in the list, display its attributes and make sure that it has the following settings: 
 

Field Value 

Section ID SECTION_1 

Layout Type One Column Layout (Standard Layout) 

 
Now add a new Form UIBB as a subcomponent of the displayed SECTION_1. For this 
click on button UIBB and choose option Form Component to add a new Form UIBB to the 
Main Page of the new UI. 
 

 
Picture: Adding a new Form UIBB to the Main Page. 

 
Specify the following attributes for this new Form UIBB: 
 

Field Value 

Component FPM_FORM_UIBB_GL2 

View FORM_WINDOW 

Configuration Name ZENH_WDCC_TOR_UI_ROOT 

Sequence Index 1 

Title Root Node Information 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

203 

203 

As described in the previous steps, the new Form UIBB will be visible in the Preview of 
the Main Page but its Component Configuration still has to be created. 

 
13) Open the Preview section and use the mouse to move over the Form UIBB with the 

Configuration Name ZENH_WDCC_TOR_UI_ROOT. You should see the related 
“wrench” icon. Click on it to start creating the Component Configuration for the Form 
UIBB. 
 

 
Picture: The new Component Configuration (not yet created) in the Preview. 

 

 
Picture: Creating the new Component Configuration 

 
Specify the following data and click on button New to create the Component 
Configuration: 
 

Field Value 

Configuration Name FPM_FORM_UIBB_GL2 

Configuration ID ZENH_WDCC_TOR_UI_ROOT 

 
On the following popups specify a description and a package where to store the 
Component Configuration (which represents the content for the initial screen). 
 

Field Value 

Description Enh. Demo UI Root Data Configuration 

Package $TMP (or your own package) 

 
14) Enter class /BOFU/CL_FBI_GUIBB_FORM as the feeder class. Click on button Edit 

Parameters and specify the following attributes. Afterwards click on button Ok. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

204 

204 

 
Picture: Specifying the Feeder Class and its parameters. 

 

Field Value 

Business Object  /SCMTMS/TOR 

Node ROOT 

Handles Toolbar Yes (flag shall be set) 

 
Navigate to the Form UIBB Schema, click on button Element and add a new Group with 
title Root Node Information. Maintain the following attributes for the new group: 
 

Field Value 

Text Root Node Information 

 
Then select the new group in the list, click on button Child Elements and from the list of 
available fields add the following fields: TOR_ID, TOR_CAT and TOR_TYPE. Maintain 
the following attributes for the fields: 
 

Field Attribute Value 

TOR_ID Label Text Document (defaulted) 

 Display Type Text View 

TOR_CAT Label Text Document Category (defaulted) 

 Display Type Text View 

TOR_TYPE Label Text Document Type (defaulted) 

 Display Type Text View 

 
Add another new Group with title Administrative Data. Maintain the following attributes for 
the new group: 
 

Field Value 

Text Administrative Data 

 
Select the new group in the list, click on button Child Elements and from the list of 
available fields add the following fields: CREATED_BY, CREATED_ON, CHANGED_BY 
and CHANGED_ON. Maintain the following attributes for the fields: 
 

Field Attribute Value 

CREATED_BY Label Text Created By (defaulted) 

 Display Type Text View 

CREATED_ON Label Text Created On (defaulted) 

 Display Type Text View 

CHANGED_BY Label Text Changed By (defaulted) 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

205 

205 

 Display Type Text View 

CHANGED_ON Label Text Changed On (defaulted) 

 Display Type Text View 

 

 
Picture: The final two groups with their fields on the Form UIBB Schema. 

 
 
Check and save this configuration. Then navigate back to component configuration 
ZENH_WDCC_TOR_UI. 
 

15) Navigate to the Wire Schema, create a new Wire by clicking on button Wire and specify 
the following attributes with corresponding values: 
 

Field Value 

Component FPM_FORM_UIBB_GL2 

Configuration Name ZENH_WDCC_TOR_UI_ROOT 

Source Component FPM_FORM_UIBB_GL2 

Source Configuration Name ZENH_WDCC_TOR_UI_INIT 

Port Type Collection 

Port Identifier CO 

Connector Class /BOFU/CL_FBI_CONNECTOR 

 

 
Picture: Creating a new Wire on the Wire Schema. 

 
Check and save component configuration ZENH_WDCC_TOR_UI and navigate to 
Application Configuration ZENH_TOR_UI. 
 
Our new UI is now ready for a first test. On the Application Configuration screen click on 
button Test to start the new user interface. Enter an existing TOR ID and hit ENTER to 
continue. You should now see the following initial and main screen: 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

206 

206 

  
Picture: The initial screen of the new UI. 

 

 
Picture: The main screen of the new UI. 

 
You can now add further UIBBs with corresponding configurations and wires between them to 
add more functionality to your user interface. The steps 1 – 15 show the very basic steps how 
to make use of the FBI feeder classes that are already implemented and available. In the next 
steps we will add further functionality.  

 
16) The next step is adding buttons in the toolbar of the main screen that allow saving a 

changed document and switching a document into Edit Mode. Go back to Component 
Configuration ZENH_WDCC_TOR_UI and in section Navigation on the left side of the 
Component Configuration Editor double click on the entry for the Main Screen. 
 
Go to the Toolbar Schema of the Main Screen and select the entry for the Global Toolbar 
in the tree list. Click on button Toolbar Element to add the Standard Functions Save and 
Edit. 
 

 
Picture: Adding the actions Save and Edit to the Global Toolbar. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

207 

207 

 
Picture: Adding a Toolbar Element. 

 
On the following popup click on button Save to add the save button. Click again on button 
Toolbar Element to add the second button Edit to the Global Toolbar. Specify the 
following attributes for the two new buttons: 
 

Field Value 

Element ID FPM_SAVE_1 (defaulted) 

Add Separator Yes 

FPM Event ID FPM_SAVE (is set and used automatically) 

 

Field Value 

Element ID FPM_EDIT_1 (defaulted) 

Add Separator Yes 

FPM Event ID FPM_EDIT (is set and used automatically) 

 
When data is displayed on the main screen you can now click on button Edit to switch the 
displayed document into Edit Mode. Input fields can now be entered. Text View fields 
remain Display-Only fields. Moreover you can now click on button Save to save changed 
data. 
 
 

 
Picture: The final configuration of the Main Screen Global Toolbar. 

 
17) Let’s add a second Form UIBB on the Main Screen to display Business Partner Data 

coming from the TOR Root node. Proceed as described in the steps 12 – 15. On the 
Overview Page Schema, click on button UIBB , add a new Form Component and 
maintain the following attributes for it: 
 

Field Value 

Component FPM_FORM_UIBB_GL2 

Window Name FORM_WINDOW 

Configuration ID ZENH_WDCC_TOR_UI_BUPA 

Sequence Index 2 

Title Business Partner Data 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

208 

208 

Again you can find this new Form UIBB in the Preview section where you can start 
creating the required Component Configuration ZENH_WDCC_TOR_UI_BUPA. Assign 
class /BOFU/CL_FBI_GUIBB_FORM as the feeder class for the Form UIBB and specify 
the following Feeder Class Parameters. 
 

Field Value 

Business Object  /SCMTMS/TOR 

Node ROOT 

Handles Toolbar Yes 

 
On the Form UIBB Schema click on button Element and add a new Group with title Root 
Business Partner Data. Maintain the following attributes for the new group: 
 

Field Value 

Text Root Business Partner Data 

 
Select the new group in the list, click on button Child Elements and from the list of 
available fields add the following fields: CONSIGNEEID, SHIPPERID and TSPID. 
Maintain the following attributes for the fields: 
 

Field Attribute Value 

CONSIGNEEID Label Text Consignee (defaulted) 

 Display Type Input Field 

SHIPPERID Label Text Shipper (defaulted) 

 Display Type Input Field 

TSPID Label Text Carrier (defaulted) 

 Display Type Input Field 

 
Check and save this configuration. Then navigate back to component configuration 
ZENH_WDCC_TOR_UI. 

 
18) Navigate to the Wire Schema, create a new Wire by clicking on button Wire and specify 

the following attributes with corresponding values: 
 

Field Value 

Component FPM_FORM_UIBB_GL2 

Configuration Name ZENH_WDCC_TOR_UI_BUPA 

Source Component FPM_FORM_UIBB_GL2 

Source Configuration Name ZENH_WDCC_TOR_UI_INIT 

Port Type Collection 

Port Identifier CO 

Connector Class /BOFU/CL_FBI_CONNECTOR 

 

 
Picture: Creating a new Wire on the Wire Schema. 

 
Check and save component configuration ZENH_WDCC_TOR_UI and navigate to 
Application Configuration ZENH_TOR_UI. Here you can click on button Test again to 
start the UI again. You should now see the second Form UIBB represented as a tab strip 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

209 

209 

containing Business Partner Data that is stored on the TOR Root node along with the two 
standard functions Save and Edit that we had added to the Global Toolbar. 
 

 
Picture: The additional tab strip for Business Partner Data on the new UI. 

 
You can now switch into Edit Mode and e.g. enter a carrier in the corresponding field. 
Then save the document, refresh the browser (press F5), display the same document 
again and verify that this change has been persisted in the document. 

 
19) As a last step we now add a List UIBB on the Main Screen to display Item Data 

associated with the TOR Root node. Again proceed as described in the steps 12 – 15. Go 
to the Overview Page Schema, click on button UIBB , add a new List Component and 
maintain the following attributes for it: 
 

Field Value 

Component FPM_LIST_UIBB_ATS 

Window Name LIST_WINDOW 

Configuration ID ZENH_WDCC_TOR_UI_ITEM 

Sequence Index 3 

Title Item Node Information 

 
Go to the Preview section and start creating the required Component Configuration 
ZENH_WDCC_TOR_UI_ITEM. Assign class /BOFU/CL_FBI_GUIBB_LIST as the feeder 
class for the List UIBB and specify the following Feeder Class Parameters. 
 

Field Value 

Business Object  /SCMTMS/TOR 

Node ITEM_TR 

Handles Toolbar Yes 

 
Go to the List UIBB Schema and click on button Column. From the list of available 
columns choose the following ones and add them to the List UIBB: ITEM_ID, 
ITEM_DESCR, PRODUCT_ID, GRO_VOL_VAL, GRO_VOL_UNI, GRO_WEI_VAL and 
GRO_WEI_UNI. 
 
Check the attributes for each of these fields. Initially all added fields are defined to be 
Text Views in attribute Display Type, i.e. they are defined to be Display-Only fields. If you 
want any of the listed fields to be input fields were data can be entered or adjusted in Edit 
Mode change the attribute Display Type of the field to Input Field. Define e.g. the fields 
GRO_VOL_VAL and GRO_WEI_VAL as input fields. 
 
Now go to the Toolbar Schema of the List UIBB, click on button Toolbar Element and 
from the list of available actions add the standard FBI Actions FBI_CREATE and 
FBI_DELETE to the toolbar of the list UIBB. They can then be used to add or remove 
items to a document in Edit Mode (of course you can any of the other actions from the list 
of available actions). 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

210 

210 

 
Picture: The final configuration of the List UIBB. 

 
Check and save this configuration. Then navigate back to component configuration 
ZENH_WDCC_TOR_UI. 

 
20) Navigate to the Wire Schema, create a new Wire by clicking on button Wire and specify 

the following attributes with corresponding values: 
 

Field Value 

Component FPM_LIST_UIBB_ATS 

Configuration Name ZENH_WDCC_TOR_UI_ITEM 

Source Component FPM_FORM_UIBB_GL2 

Source Configuration Name ZENH_WDCC_TOR_UI_INIT 

Port Type Collection 

Port Identifier CO 

Connector Class /BOFU/CL_FBI_CONNECTOR 

Source Node Association ITEM_TR 

 

 
Picture: Creating a new Wire on the Wire Schema. 

 
Check and save component configuration ZENH_WDCC_TOR_UI. For testing the UI 
again navigate to Application Configuration ZENH_TOR_UI and click on button Test. You 
should now see the final UI with the configured List UIBB represented as a tab strip 
containing also the Item data associated with the TOR Root node of the displayed 
document. You can use the personalization to make the Item List e.g. a separate section, 
switch into Edit Mode and save changes done to the document. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

211 

211 

 
Picture: The final Demo UI that was built from scratch. 

 
Suggest playing around a bit with this UI that we built from scratch and add a few more 
things based on the UI enhancement use cases that were described so far. 

 

5.4.8 Copying a complete FPM-based Application 

The first 7 UI Enhancement Use Cases described examples how to customize existing 
standard Component Configurations as well as how to create and include your own 
Component Configurations into the standard SAP TM UI. In the last section we built a 
complete UI from scratch with quite some steps required to get it up and running 
(nevertheless, these steps can be repeated and executed in less than 45 minutes!). 
 
There is a Web Dynpro Application available, the so called FPM Configuration Hierarchy 
Browser, which allows not only browsing through the Component Configuration Hierarchy of 
an existing FPM-based application. In addition it also allows creating a deep copy of this 
Component Configuration Hierarchy. The resulting copy represents again a running FPM-
based application. 
 
 
The FPM Configuration Hierarchy Browser can be started with the following general link 
which has to be enhanced with information on server and port, depending on where you want 
to start the tool. 
 
http://[server]:[port]/sap/bc/webdynpro/sap/fpm_cfg_hierarchy_browser  
 
Example: 
http://ukwtr9x.wdf.sap.corp:80089/sap/bc/webdynpro/sap/fpm_cfg_hierarchy_browser 
 
On the initial screen you can enter the technical name of an Application Configuration and 
display its Component Configuration Hierarchy. Remember the steps to create a UI from 
scratch in the previous section 5.4.7. Here you can now pretty nice see the hierarchy of 
Component Configurations that we created. Let’s take a look at the example UI that we 
created. 
 
1) Start the tool as mentioned above and enter the Application Configuration ID 

ZENH_TOR_UI in input field Application Configuration. Then press Enter or click on 
button Continue. 
 

http://[server]:[port]/sap/bc/webdynpro/sap/fpm_cfg_hierarchy_comp
http://ukwtr9x.wdf.sap.corp:80089/sap/bc/webdynpro/sap/fpm_cfg_hierarchy_browser


SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

212 

212 

 
Picture: Start screen of the Application Hierarchy Browser. 

 
2) On the following screen you will first of all see the Application Hierarchy in Browser Mode. 

This mode allows browsing through the hierarchy of Component Configurations that make 
up the given FPM-based application. Each Component Configuration can be reached 
from here by clicking on the corresponding link on the right side of the tree list. So this 
tool is actually very helpful with getting an overview of the Component Configurations 
involved in a complete FPM-based application. 
 

 
Picture: The Application Hierarchy in Browser Mode. 

 
3) Click on button Deep-Copy Mode to switch into the deep-copy mode. Here you can now 

determine which Component Configurations you want to copy by a deep-copy and take it 
over to the new Application Configuration that the copy will represent. 
 
Clicking on button Change Affixes allows you specifying Pre- and Postfixes for the 
Component Configuration Copy IDs. Here you need to make sure of course that nothing 
is copied with the same name or ID of an already existing Component Configuration. In 
the example on the picture below the default proposal for a postfix CP was simply taken 
over. As a result all Target Configuration IDs end with CP (“copy”). 
 

 
Picture: The Application Hierarchy in Deep-Copy Mode. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

213 

213 

 
Before you actually start the deep-copy of the Application Configuration you can define 
for each involved Component Configuration whether it shall be copied over with a 
corresponding target Component Configuration ID to the new Application Configuration. 
 
In the example shown in the picture above the tree list is fully expanded and all the 
involved Component Configurations are visible. In column Copy of the tree list you can 
set or reset the flag indicating that the Component Configuration shall be copied (set) or 
not (reset). 
 

4) Click on button Start Deep-Copy once you have finally selected the Component 
Configurations to be taken over into the copy. On the following two popups you will be 
asked to specify a package and (if required) a transport request for the new objects that 
will be created by the copy process. The result is a new Application Configuration 
ZENH_TOR_UI_CP with all the copied sub-configurations in its hierarchy. 
 

 
Picture: The Deep-Copy result in the target package (SE80). 

 
Note: The application in the example is ZENH_TOR_UI which we created in section 5.4.7 
from scratch. What is now copied is not the application but the Application Configuration 
(which in this case has also has the name ZENH_TOR_UI). The result of the deep-copy 
is another, alternative Application Configuration of Application ZENH_TOR_UI. 

 
5) If you want to also have an explicit new Web Dynpro Application you can create one as 

described in section 5.4.7 steps 1 and 2. You can then assign the Deep-Copy result, i.e. 
the Application Configuration ZENH_TOR_UI_CP as the Application Configuration of your 
new Application. 

 

5.4.9 Adding a Web Dynpro Application to NWBC 

In the previous sections a FPM-based application was created. Of course users will not start 
the application from within transaction SE80 or others but you may want to make it accessible 
for a specific user role in the NWBC environment as part of either an existing functional area 
or as a new, independent functional area. The following sections show how this can be done. 
 
The following steps describe how to use transaction PFCG for adjusting the role that you use 
along with your user to start the SAP TM User Interface in NWBC. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

214 

214 

1) Usually you start the SAP TM User interface by starting transaction NWBC, i.e. the 
NetWeaver Business Client. On the initial screen you get a list of user roles that you can 
use in the next step to start the user interface. 
 
Start transaction NWBC and note down the role that you use to start the user interface. 
This should look as indicated on the following pictures: 
 

 
Picture: Starting NWBC and choosing a user role. 

 
2) In this example we choose PFCG Role /SCMTMS/PROCES_ADMINISTRAOR to start 

the SAP TM User Interface. Start transaction PFCG and enter the mentioned role in field 
Role of the initial screen. 
 
Change into Change Mode to enable adjusting the role menu and then navigate to tab 
strip Menu. Here you can first of all see the current definition of the folder structure that 
contains the menu content. 
 

 
Picture: The menu structure of the example role. 

 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

215 

215 

3) We now create our own folder substructure in the menu hierarchy to define our own menu 
area that will contain the FPM-based application created in section 5.4.7. 
 
In the menu hierarchy mark the topmost folder Role Menu and click on button Create 
Folder. On the following popup enter a folder name in field Folder Name. Example: Demo 
Enhancement Applications. 
 

 
Picture: Creating a new folder in the menu hierarchy. 

 
Now mark the new folder, click on button Create Folder again and create an additional 
folder (i.e. a subfolder) below the first one. On the popup enter a folder name in field 
Folder Name. Example: TOR UI Demo. Finally the 
 

 
Picture: The adjusted menu hierarchy. 

 
4) For both new folders a few further properties shall be specified. Mark the new folder 

Demo Enhancement Applications in the menu hierarchy and click on button Other Node 
Details on the toolbar above. Make sure that the following properties are set for the folder: 
 

Field Value 

Text Demo Enhancement Applications (this is actually 
defaulted already from the folder object name; you 
may want to adjust it) 

Folder Option As Service Map. 
 
A service map shows an overview of a navigation 
structure with the entries of the next navigational 
level in the navigation tree, which provides the 
end user with a better overview of the business 
process that is represented by the folder. 

Single Top Level Yes. 

Service Map Icon (Optional) Here you could define/change the icon 
that is used to visualize a folder within a service 
map. 

 
Repeat the same steps for the second new folder TOR UI Demo with the following 
settings: 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

216 

216 

Field Value 

Text TOR UI Demo (this is actually defaulted already 
from the folder object name; you may want to 
adjust it) 

Folder Option As Service Map. 
 
A service map shows an overview of a navigation 
structure with the entries of the next navigational 
level in the navigation tree, which provides the 
end user with a better overview of the business 
process that is represented by the folder. 

Single Top Level (is always blank for folders that are not root 
folders) 

Service Map Icon (Optional) Here you could define/change the icon 
that is used to visualize a folder within a service 
map. 

 
With these settings you can influence the way how the new menu hierarchy parts will later 
on be represented in NWBC. For more options provided with these settings check out the 
F1-Help for each property in your system. The documentation provided there explains 
available values and settings in more detail. 
 

 
Picture: Specifying further folder properties. 

 
5) Add an FPM-based application to example folder TOR UI Demo. Mark this folder in the 

menu hierarchy. Open the menu of selection button Insert Node and choose option Web 
Dynpro Application. 
 
On the following popup specify the following properties: 
 

Field Value 

Web Dynpro Application ZENH_TOR_UI 

Description Enhancement Demo UI for TOR BO 

Application Configuration ZENH_TOR_UI 

Protocol - HTTPS Yes. 

 
Then click on Enter to add the application to the chosen folder. You should now see a 
corresponding entry for the FPM-based application under folder TOR UI Demo. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

217 

217 

 
Picture: Adding the FPM-based application to the new folder. 

 

 
Picture: Specifying the properties of the FPM-based application. 

 
6) In the next step we can specify a few more properties for this new application entry. Mark 

the application in folder TOR UI Demo and click again on button Other Node Details as 
shown already in step 4 for the folders. Make sure that the following properties are set for 
the application: 
 

Field Value 

Text Enhancement Demo UI for TOR BO (this is 
actually defaulted already from the folder object 
name; you may want to adjust it) 

Description This is an enhancement application for displaying 
TOR data. 

Visibility Visible 

Launch Application  Standard 

 
 
 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

218 

218 

7) Start transaction NWBC in your system and chose the user role that were adjusted in the 
previous steps. You should then see the following result: 
 

 
Picture: The new menu structure and application in NWBC. 

 
8) You can now start your application just like any other standard application in NWBC. 

 

 
Picture: The initial screen of the new application in NWBC. 

 

 
Picture: An example document displayed with the new application in NWBC. 

 
 
 
 
 

 
  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

219 

219 

 

5.5 Transporting or removing UI enhancements 
Transporting as well as deleting created UI customizing is possible via a corresponding Web 
Dynpro application that can be started with the following general link which has to be 
enhanced with information on server and port, depending on where you want to start the tool. 
 
http://[server]:[port]/sap/bc/webdynpro/sap/wd_analyze_config_comp 
 
Example: http://ukwtr9x.wdf.sap.corp:80089/sap/bc/webdynpro/sap/wd_analyze_config_comp 
 
Here you can find the standard Component Configuration as well as your own Component 
Configurations. The tool allows searching Component Configurations by Component Name 
(e.g. search all Component Configurations for FPM_LIST_UIBB*), Configuration (e.g. search 
for all Component Configuration IDs starting with /SCMTMS/WDCC_FRE_ORD*) and by 
Author (e.g. search all Component Configurations created by user XYZ). 
 
You can mark an entry in the result list and either transport it from here through your system 
landscape or delete it if required. Moreover it allows navigating to the related Personalization 
and start the Configuration Editor for the selected entry. Example: 
 
1) Start the tool as mentioned above. In field Find by select Configuration and in the input 

field next to the drop down list enter the name of a configuration that you want to take a 
look at. Example: /SCMTMS/WDCC_FRE_ORDER. 
 

 
Picture: The initial screen of the tool. 

 
2) On following screen mark the Component Configuration of interest in the search result list 

and click on button Goto Personalization. In the list of Component Configurations select 
the entry with Component Configuration ID /SCMTMS/WDCC_FRE_ORDER. You can 
expand this entry to display further detailed properties of this Component Configuration. 
 

 
Picture: Navigating to the Personalization of the Component Configuration. 

 
The button Delete allows deleting a selected Component Configuration. With button 
Transport you can trigger the transport of the selected Component Configuration. A 
following popup will ask you to provide a corresponding transport request. 

http://[server]:[port]/sap/bc/webdynpro/sap/wd_analyze_config_comp
http://ukwtr9x.wdf.sap.corp:80089/sap/bc/webdynpro/sap/wd_analyze_config_comp


SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

220 

220 

 
3) Click on the link Goto Personalization. On the following screen you can see the list of 

personalization entries that are currently available for the selected Component 
Configuration (see List of Component Personalizations). 
 

 
Picture: Deleting and transporting personalization. 

 
Again the buttons Transport and Delete allows transporting or deleting personalization. 
Moreover you can follow the link Call Customizing Editor to start the Component 
Customizing Editor for the related Component Configuration ID. 
 
In the example shown on the picture above you can see that there is a personalization 
record selected that has User * and User Scope A. This indicates a personalization of 
Component Configuration /SCMTMS/WDCC_FRE_ORDER which is valid for all users 
while the other shown entries have an individual user and User Scope U, i.e. the 
personalization associated with these records is only valid for that particular user. 
 
In general, the described tool allows you to search for Component Configurations and 
then navigating to the related personalization. You can of course also search here for 
your very own Component Configurations and delete or transport them from here. 
Moreover, you can delete transport associated personalization, e.g. the enhancement of 
a standard Component Configuration with an additional List UIBB as shown in the picture 
above. Moreover you can start the Component Configuration Editor in Configuration or 
Customizing mode to further edit e.g. your own Component Configurations or customize 
existing standard Component Configurations. 

 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

221 

221 

6 Enhancing Queries and POWL 

6.1 Queries 

6.1.1 General concept 

As described in section 3.3 the BOBF Enhancement Workbench does not support enhancing 
existing standard BO queries. It only supports adding new such queries. The only way to 
extend standard Node Attribute Queries in the standard BOPF environment is to add further 
query node attributes, i.e. adding extension fields to the query node. For standard Custom 
Queries and Generic Result Queries the following section describes a concept how to 
enhance them. 
 
The majority of SAP TM Queries that require an implementation (i.e. Custom Queries or 
Generic Result Queries) are derived from super class /SCMTMS/CL_Q_SUPERCLASS. This 
super class not only helps making these queries work in a unified way but also provides an 
enhancement mechanism which makes such standard SAP TM queries extensible. 
 
The query super class provides an API for creating an optimized database SELECT 
statement to execute the query and returning the requested result table. For this the class 
implements the BOPF interface /BOBF/IF_FRW_QUERY for queries and further methods that 
are frequently used in query implementations. 
 
Remember that the result of a standard Node Query will be a list of keys for instances of the 
BO node that the query is assigned to. In case of a Generic Result Query the result will return 
the data in a table having a predefined result structure.  
 
The enhancement mechanism is based on the so called Query Enhancement Table (QET) 
/SCMTMS/C_QENH. At runtime the super class creates an optimized database SELECT 
statement from the content of the query structure and the query enhancement table. The 
Query Enhancement Table has the following structure: 
 

Attribute  Description 

MANDT Filled 
automatically 

Client. 

QUERY_CAT Mandatory Value “space” = Standard Node Query, “G” = 
Generic Result Query (Custom Query). 

BO_NAME Mandatory Name of the Business Object. 

NODE_NAME Mandatory Name of the Business Object node. 

QUERY_NAME Mandatory Name of the query assigned to the specified BO 
node. The first five components of the table identify 
the query to be enhanced. 

QUERY_ATTRIBUTE Mandatory Name of the new query attribute. 

ATTR_NODE_NAME Mandatory Name of the node to which the additional query 
attribute belongs to. 
 
If an external BO node or a database table (or 
database view) is used as the source of the 
additional query attribute, this field contains the 
name of the query BO node which contains the 
attribute used for the JOIN between the query BO 
and the external BO node or database table 
("source node key of the Cross BO Association"). 

NODE_ATTRIBUTE Mandatory Name of the additional query attribute as it is named 
on its node. 

EXT_BO_NAME Optional Name of Target Business Object in Cross BO 
Association 

EXT_NODE_NAME Optional Name of Node Containing Cross BO Association: 
Together with EXT_BO_NAME this component 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

222 

222 

describes the node of an external BO to which the 
additional query attribute belongs to. 

EXT_DB_NAME Optional Table Name: Instead of an external BO node it is 
also possible to define a database table (or view) 
directly, to which the additional query attribute 
belongs to. 

EXT_JOIN_ATTR Optional External Join Attribute (on Cross BO Assoc. Node or 
DB Table): This component is needed if an external 
BO node or a database table (or view) contains the 
additional query attribute. It specifies the attribute 
within this external BO node or database table (or 
view) which is used to join the ATTR_NODE_NAME 
node and the external BO node or database table 
(or view) together. 

NODE_JOIN_ATTR Optional Source Join Attribute (on Cross BO Assoc. Node of 
Query BO). This component is needed if an external 
BO node or a database table (or view) contains the 
additional query attribute. It specifies the attribute of 
the ATTR_NODE_NAME node of the query BO 
which is used to join the ATTR_NODE_NAME node 
and the external BO node or database table (or 
view) together. 

NODE_JOIN_ATTR2 Optional Target Join Attribute (on Target DB Table, such as 
LANGU). 

ND_JN_ATTR2_VAL Optional Target Node Join Attribute Value. 

ND_JN_ATTR2_C Optional Target Node Join Attribute Value from Constant or 
Type. 

 

6.1.2 Maintaining the standard query enhancement table 
You can use report /SCMTMS/MAINT_QUERY_ENH for specifying the required entries in the 
Query Enhancement Table (QET) or start transaction /SCMTMS/QUERY_ENH which starts 
the same report. It allows specifying entries depending on the use case and the type of 
enhancement that you want to realize. 
 

 
Picture: Report for QET maintenance. 

 
The following list shows the specific QET views available for each possible use case. The 
options available on the selection screen of the report allow specifying the enhancement use 
case. Press F8 to get to the corresponding maintenance view and specify the required entries 
for the query enhancement. 
 
 
 
 
 
 
 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

223 

223 

View Function / Use Case 

/SCMTMS/V_QENH1 View for Query Extensions - additional attributes 

/SCMTMS/V_QENH2 View for Query Extensions - additional attributes XBO 

/SCMTMS/V_QENH3 View for Query Extensions - additional attributes from table 

/SCMTMS/V_QENH4 View for Generic Result Query Extensions - additional attributes 

/SCMTMS/V_QENH5 View for Generic Result Query Extensions - additional attributes 
XBO 

/SCMTMS/V_QENH6 View for Generic Result Query Extensions - additional attributes 
from table. 

 
Before we take a look at some discrete examples for standard query enhancements some 
general remarks on how to use the report to maintain query extensions: 
 
1) Enhancing Node Attribute Queries: 

 
The data type (i.e. the structure providing the selection criteria) of the most simple Node 
Attribute Query is simply the node data structure of the node that the query is assigned 
to. There is no implementing class involved and the BOPF Framework handles such 
queries automatically. Alternatively the data type is a separate structure that represents a 
subset of the node data structure. 
 

 You don’t have to specify any entry in the QET to enhance such queries. 
 

 If the data type corresponds to the node data structure (i.e. the structure with exactly 
the same technical name is used to define the query data type), you can simply add 
extension fields to the node data structure as described in section 3.3.4. The 
extension fields will then automatically be part of the data type and therefore also 
available as search criterion for the query. 
 

 If the data type is a separate structure representing a subset of the node data 
structure, you need to add the extension field not only on the node (see section 3.3.4) 
but also add it to the separate structure used for the data type of the query. 
 

 In both cases the extension fields will be part of the node that the query is assigned to 
and therefore will also be returned in the query result when the data is requested 
along with the BO node instance keys that match the search criteria. 
 

 An example for such a query is e.g. ROOT_ELEMENTS on the TOR Root Node. 
When you have placed enhancement fields at this node, the mentioned Node 
Attribute Query will directly contain these fields as search criteria. 

 
2) Enhancing Custom Queries: 

 
A standard Custom Query is always related to a specific node of the corresponding 
business object. It has a data type representing the search criteria of the query as well as 
an implementing class. The set of search criteria is not restricted to attributes of the node 
that it is assigned to, i.e. the search criteria can come from another node of the same BO, 
from a node of another BO or even from a completely different database table. 
 
If such Queries do not have a specific result type and result table type (assumed in this 
case) they just return the node instance keys of those records matching the search 
criteria specified in the request structure.  

 

 In the section Type of Query Enhancement, you only need to select option Query 
Structure to define/declare additional attributes that shall serve as selection criteria. 
 

 Chose a corresponding Query Enhancement Category and press F8. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

224 

224 

 The corresponding view of the QET will open and allow specifying entries for the 
additional selection attributes. Specify values in all required fields and save the new 
entry. 

 

 In this use case you just need to enhance the query data structure by your additional 
selection attributes as we do not have an explicit result type involved but only return 
keys & data of the node that the query is assigned to. 

 

 
Picture: An example entry for the QET View /SCMTMS/V_QENH1. 

 

 Note that you do not need such an entry for enhancement fields which are located on 
the same node that the query is assigned to. They will be implicitly available as 
selection criteria.  
 

 An example for such a query is e.g. PLANNING_ATTRIBUTES which is assigned to 
the TOR Root Node. In the picture above you can see an example entry in the QET 
that enhances the query by an additional selection attribute ZENH_CHNG_DATE 
which located on an Enhancement Node ZENH_ROOT_SUBNODE (see section 
3.3.5 how to create this example enhancement node and section 5.4.3 how to add 
this subnode to the UI as a List UIBB). 
 
In field Node Attribute the field ZENH_CHNG_DATE is specified. This field will be 
available in the query search structure with the attribute name specified in field Query 
Attribute (here it is the same attribute name ZENH_CHNG_DATE). At runtime, the 
Query attribute (search criteria) will be mapped onto the Node Attribute (attribute to 
be searched on). 

 
3) Enhancing Generic Result Queries: A Generic Result Query (e.g. used for POWLs) 

returns its results as a table with a specific result structure, i.e.it can return more than just 
data of the node that it is assigned to. Just like for Custom Queries, the set of search 
criteria is not restricted to attributes of the node that the Generic Result Query is assigned 
to, i.e. the search criteria can come from another node of the same BO, from a node of 
another BO or even from a completely different database table. In the first step we 
enhance the query/filter structure, i.e. the list of selection criteria as follows: 
 

 In the section Type of Query Enhancement, you first need to select option Query 
Structure to define/declare additional attributes that shall serve as selection criteria. 
 

 Chose a corresponding Query Enhancement Category and hit F8. 
 

 The corresponding view of the QET will open. Here you can maintain entries for the 
additional selection attributes. Maintain all required fields and save the new entry. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

225 

225 

 Finally, you need to add the additional selection attributes in the corresponding DDIC 
object (see example 2 in section 6.1.5). This is done by defining an Append for the 
filter structure with the new field included. 

 
In case of Generic Result Queries being used e.g. for the POWL selection, also the origin 
of the attributes of the result table needs to be specified. This is done the same way as 
shown for the attributes of the query/filter structure: 
 

 In the section Type of Query Enhancement, you first need to select option Result 
Structure to define/declare additional attributes that shall be returned as additional 
result attributes. 
 

 Chose a corresponding Query Enhancement Category and hit F8. 
 

 The corresponding view of the QET will open. Here you can maintain entries for the 
additional result attributes. Maintain all required fields and save the new entry. 

 

 Finally, you need to add the additional result attributes in the corresponding DDIC 
object for the structure of the result table (see example 2 in section 6.1.5). This is 
done by defining an Append for the result structure with the new fields included. 

 
The following must be kept in mind when enhancing such queries and especially when 
creating and implementing your very own Generic Result Queries from scratch: 

 

 Assumption is, that all attributes of the result table structure for which no origin and 
mapping was defined, belong to the query node (i.e. the node that the query is 
assigned to). 
 

 The result table structure must contain attribute DB_KEY (corresponding to the 
DB_KEY attribute of the query node database table) as the leading (i.e. the very first!) 
attribute. This is required to enable finding the link between the query node instances 
and the found result records. 
 

 The result table structure should moreover contain all attributes that are relevant for 
authority checks. This helps quite a bit to get the query optimized from a performance 
perspective. Such a query first of all selects all data that can be found with the given 
selection criteria. Then the authority check is executed which reduces the initial 
result. Note that any attribute which is relevant for authority check and not part of the 
result table structure causes additional effort for reading/determining this data and 
checking it. Assuming you have provided a maximum number of rows to be returned 
by the query, the result will contain this number of records with only authorized data, 
i.e. the query will stop selection when it found the maximum number of authorized 
data records or earlier when there aren’t that many. 

 

 If for the result table only the mandatory attribute DB_KEY was defined, it is assumed 
that method GET_RESULT_DATA was overwritten. In this case only the DB_KEY 
attribute will be selected from database per default. All further attributes have to be 
selected within the GET_RESULT_DATA method (with its corresponding alternative 
implementation). 
 

 In general, it is always allowed and possible to overwrite the PROTECTED methods 
of the query super class to realize individual query logic. Nevertheless it is important 
to keep the query extensible. This can be accomplished if additional attributes are 
always defined within the query and result enhancement tables. The best place to do 
this is within method GET_QUERY_ENHANCE_TABLE. But as this is not always 
possible or feasible, there are further methods called during generating the query 
SELECT statement at runtime: 
 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

226 

226 

o EXTEND_SELECT_CLAUSES: This method is called right before the 
database SELECT statement is executed. It provides the possibility to extend 
or modify all parts of the SELECT statement to realize any kind of possible 
selection on the TM backend. 
 

o EXTEND_RESULT_DATA: This method is called after the query was 
completely executed and the result data has been collected following the 
definitions from the result enhancement table. It provides the possibility to 
select further data to extend the result structure or to modify the result table 
in any way. 
 

o SPLIT_SELECTION_PARAMETERS: This method is called before the real 
query execution starts. It can be used to take parts of the selection 
parameters out into an extra selection parameters table which shall not be 
taken into account by the standard query. The selection parameters from the 
extra table can be processed in method POST_KEY_FILTERING. 
 

o POST_KEY_FILTERING: This method is called after the database selection 
of the query has been done. It can be used to filter the selected instance keys 
before they are returned to the consumer. It is called with the selection 
parameters that were processed by the query so far, and with the table of 
extra selection parameters. 

 

6.1.3 BAdI for creation of query enhancement table entries 

Instead of using the mentioned report to provide entries for the query enhancement table, 
these entries can also get provided by an implementation of BAdI /SCMTMS/FRW_QUERY. 
While the report allows creation of the entries without coding, the use of the BAdI requires 
implementation of corresponding code that provides additional entries. 
 
The BAdI allows a programmatic provisioning of Query Enhancement information. Customers 
and partners can implement the BAdI to provide corresponding information. With an 
implementation you can e.g. use other tables than the standard QET (e.g. your own customer 
specific tables) that contain the enhancement data. The default implementation of the BAdI 
takes the information from the mentioned table /SCMTMS/C_QENH whose records were 
created with report /SCMTMS/MAINT_QUERY_ENH (i.e. this is the “standard” enhancement 
data source). 
 

6.1.4 Example 1: Enhancing a Custom Query 
The following first example shows how to enhance Custom Query PLANNING_ATTRIBUTES 
defined for the Root node of the Freight Order BO (TOR). In this example the query shall be 
enhanced by a field ZENH_CHNG_DATE that is part of an enhancement node 
ZENH_ROOT_SUBNODE.  
 
See section 3.3.5 how to create this example enhancement node and section 5.4.3 how to 
add this subnode to the UI as a List UIBB. Moreover, the example includes the example 
enhancement fields added by the example in section 3.3.4. The related exercises are 
prerequisite for creating example data and making the following query enhancement example 
work. Of course you can also try all this out in a similar way with other already existing 
standard nodes and fields.  
 
1) Start report /SCMTMS/MAINT_QUERY_ENH: Choose Type of Query Enhancement 

Query Structure, Query Enhancement Category Attribute of the same BO and press F8. 
 

2) On the next screen you can see the corresponding maintenance view (in this case it is 
/SCMTMS/V_QENH1). Click on button New Entries and enter the required data for the 
query extension field: 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

227 

227 

Field Value Comment 

BO Name /SCMTMS/TOR The technical name for the 
Freight Order BO. 

Query Node Name ROOT The node of the BO that the query 
to be enhanced is assigned to. 

Query Name PLANNING_ATTRIBUTES The name of the query. 

Attribute Node ZENH_ROOT_SUBNODE The node where the extension 
field can be found. 

Node Attribute ZENH_CHNG_DATE The name of the extension field 
which will be available as a 
selection criterion. 

Query Attribute ZENH_CHNG_DATE The name of the extension 
attribute as it shall be used in the 
query. This name can be different 
from the Node Attribute. 

 
3) Save the new entry. The standard query has now an additional query attribute that can be 

used. 
 

4) Test the enhanced query. Note that the query enhancements cannot be tested via the 
BOBF Test tool /BOBF/TEST_UI. As the query enhancement concept is not part of the 
BOBF framework itself, any query enhancements will not appear in the list of selection 
fields when testing with the test tool. Instead, the query can be tested with a simple test 
report that executes the query with the new query attribute. Code example: 
 
*&---------------------------------------------------------------- 

*& Report ZREP_CUSTOM_QUERY_TEST 

*&---------------------------------------------------------------- 

*& Demonstration of a standard query enhancement 

*&---------------------------------------------------------------- 

REPORT  zrep_custom_query_test. 

 

DATA:  lo_srv          TYPE REF TO /bobf/if_tra_service_manager, 

       lt_selpar       TYPE /bobf/t_frw_query_selparam, 

       ls_selpar       TYPE /bobf/s_frw_query_selparam, 

       lo_message      TYPE REF TO /bobf/if_frw_message, 

       lt_data         TYPE /scmtms/t_tor_root_k, 

       ls_key          TYPE /bobf/s_frw_key, 

       lt_key          TYPE /bobf/t_frw_key, 

       ls_query_inf    TYPE /bobf/s_frw_query_info. 

 

CLEAR: ls_selpar, 

       lt_selpar. 

 

* Get instance of service manager for TRQ 

lo_srv = /bobf/cl_tra_serv_mgr_factory=>get_service_manager( 

/scmtms/if_tor_c=>sc_bo_key ). 

 

*Get instances of TOR via Query 

ls_selpar-attribute_name = /scmtms/if_tor_c=>sc_query_attribute- 

            root-planning_attributes-changed_by. 

 

ls_selpar-option         = 'EQ'. 

ls_selpar-sign           = 'I'. 

ls_selpar-low            = 'SCMSUPPORT'. 

APPEND ls_selpar TO lt_selpar. 

 

ls_selpar-attribute_name = 'ZENH_ENTRY_DATE'. 

ls_selpar-option         = 'EQ'. 

ls_selpar-sign           = 'I'. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

228 

228 

ls_selpar-low            = '20140610072530'. 

APPEND ls_selpar TO lt_selpar. 

 

ls_selpar-attribute_name = 'ZENH_CHNG_DATE'. 

ls_selpar-option         = 'EQ'. 

ls_selpar-sign           = 'I'. 

ls_selpar-low            = '20140610072530'. 

APPEND ls_selpar TO lt_selpar.  

 

BREAK-POINT. 

 

* Execute the query 

lo_srv->query( 

  EXPORTING 

    iv_query_key            = /scmtms/if_tor_c=>sc_query-root-       

                              planning_attributes  " Query 

    it_selection_parameters = lt_selpar " Query Sel.Parameters 

    iv_fill_data            = abap_true 

  IMPORTING 

    eo_message              = lo_message   " Message Object 

    es_query_info           = ls_query_inf " Query Information 

    et_data                 = lt_data 

    et_key                  = lt_key ). 

 

BREAK-POINT. 

 
The query in this example should return just the keys of those instances of BO 
/SCMTMS/TOR which were changed by user SCMSUPPORT and ZENH_ENTRY_DATE 
equal to 10.06.2014 07:25:30 (represented in the coding above as timestamp 
20140610072530) and have an existing data record on the enhancement node 
ZENH_ROOT_SUBNODE, attribute ZENH_CHNG_DATA equal to 10.06.2014 07:25:30 (also 
represented as time stamp in the above coding). 
 
The extension field ZENH_ENTRY_DATA was added to the Root Node (see section 3.3.4), 
i.e.to the same node that the query is assigned to. Therefore it does not need an explicit QET 
entry. But field ZENH_CHNG_DATA is located on node ZENH_ROOT_SUBNODE and 
therefore needs a corresponding entry. 
 
Of course you could e.g. also specify a range for the new extension fields to be used for the 
query to e.g. search for all instances within a given time frame. In general, all selection 
parameter options can be used for an enhancement selection field just like for any other 
standard selection field. 

6.1.5 Example 2: Enhancing a Generic Result Query 
In the second example the generic result query FO_DATA_BY_ATTR is extended. Again this 
query is defined and assigned for the Root node of the Freight Order BO. Again the extension 
fields ZEHN_ENTRY_DATE of the Root node and field ZENH_CHNG_DATE of the 
enhancement node ZENH_ROOT_SUBNODE shall be added to the query as a selection 
criterion. Both attributes shall also be returned in the result table. 
 
1) Start report /SCMTMS/MAINT_QUERY_ENH: Choose Type of Query Enhancement 

Query Structure, Query Enhancement Category Attribute of the same BO and press F8. 
 

2) On the next screen you can see the corresponding maintenance view (in this case it is 
/SCMTMS/V_QENH1). Click on button New Entries and enter the required data for the 
query extension field: 

 
 
 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

229 

229 

Field Value Comment 

BO Name /SCMTMS/TOR The technical name for the Freight 
Order BO. 

Query Node Name ROOT The node of the BO that the query 
to be enhanced is assigned to. 

Query Name FO_DATA_BY_ATTR The name of the query. 

Attribute Node ZENH_ROOT_SUBNODE The node where the extension field 
can be found. 

Node Attribute ZENH_CHNG_DATE The name of the extension field 
which will be available as a 
selection criterion. 

Query Attribute ZENH_CHNG_DATE The name of the extension attribute 
as it shall be used in the query. 
This name can be different from the 
Node Attribute. 

 
Note that such an entry is not required for the field ZENH_ENTRY_DATE as this is 
defined at the Root Node of BO /SCMTMS/TOR, i.e. the node that also the query is 
assigned to.  
 
With this entry in the Query Enhancement Table, the implementing class of the query 
(class /SCMTMS/CL_TOR_Q_FO , inheriting from the mentioned query super class) is 
enabled to consider the enhancement field ZENH_CHNG_DATE of enhancement node 
ZENH_ROOT_SUBNODE for building the dynamic select statement at runtime. But to 
prevent misunderstandings, this does not automatically also enhance the query’s request 
structure in the DDIC. This is required and done in step 4. 
 

3) Go back to the initial screen of report /SCMTMS/MAINT_QUERY_ENH: Choose Type of 
Query Enhancement Result Structure, Query Enhancement Category Attribute of the 
same BO and press F8. 
 
On the next screen you can see the corresponding maintenance view (in this case it is 
/SCMTMS/V_QENH4). Click on button New Entries and enter the required data for the 
query extension field: 

 
Field Value Comment 

BO Name /SCMTMS/TOR The technical name for the Freight 
Order BO. 

Query Node Name ROOT The node of the BO that the query 
to be enhanced is assigned to. 

Query Name FO_DATA_BY_ATTR The name of the query. 

Attribute Node ZENH_ROOT_SUBNODE The node where the extension field 
can be found. 

Node Attribute ZENH_CHNG_DATE The name of the extension field 
which will be available as a 
selection criterion. 

Query Attribute ZENH_CHNG_DATE The name of the extension attribute 
as it shall be used in the query. 
This name can be different from the 
Node Attribute. 

 
Again, such an entry is not required for the field ZENH_ENTRY_DATE as this is defined 
at the Root Node of BO /SCMTMS/TOR, i.e. the node that also the query is assigned to.  
 
With this entry in the Query Enhancement Table, the implementing class of the query is 
enabled to return the content of enhancement field ZENH_CHNG_DATE of enhancement 
node ZENH_ROOT_SUBNODE as an attribute of the result structure. Again, this does 
not automatically also enhance the query’s result structure in the DDIC. This is required 
and done in step 5. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

230 

230 

4) The Filter Structure of the query is defined by DDIC structure /SCMTMS/S_TOR_Q_FO 
and represents the set of selection criteria that can be used with the query. This structure 
does not correspond to a Node Structure but is in this case an arbitrary structure. So in 
the context of Generic Result Queries we have to enhance this structure as well with the 
additional fields (i.e. both enhancement fields need to be added here). 
 
In transaction /BOBF/CONF_UI navigate to business object /SCMTMS/TOR (Freight 
Order) and then navigate to the query FO_DATA_BY_ATTR under the node elements of 
the Root node. Double click on the query to display its details. Now double click on the 
displayed Filter Structure /SCMTMS/S_TOR_Q_FO of the query and create an append 
structure with the following information: 
 

Append Structure ZENH_TOR_Q_SEARCH 

Description Gen. Result Query Enh. Selection Criteria 

  
Add the following component to the append structure. 
 

Component Typing Method Component Type 

ZENH_ENTRY_DATE Types /SCMTMS/DATETIME 

ZENH_CHNG_DATE Types /SCMTMS/DATETIME 

 
Save and activate the append structure. 
 

5) The next step is to enhance the query result structure with the additional fields that shall 
be returned by the query. Again, a QET entry is only required for the attribute 
ZENH_CHNG_DATE as it is located on a different node than the node that the query is 
assigned to. 
 
In transaction /BOBF/CONF_UI navigate to business object /SCMTMS/TOR (Freight 
Order) and then navigate to the query FO_DATA_BY_ATTR under the node elements of 
the Root node. Double click on the query to display its details. Now double click on the 
displayed Result Type /SCMTMS/S_TOR_Q_FO_R of the query and create an append 
structure with the following information: 
 

Append Structure ZENH_TOR_Q_RESULT 

Description Gen. Result Query Enh. Result Attributes 

  
Add the following components to the append structure. 
 

Component Typing Method Component Type 

ZENH_ENTRY_DATE Types /SCMTMS/DATETIME 

ZENH_CHNG_DATE Types /SCMTMS/DATETIME 

 
Note that again both enhancement fields are added, this time in the DDIC structure that 
defines the result structure of the query. 
 
Save and activate the append structure. 

 
6) Test the enhanced query. As mentioned, the query enhancements cannot be tested via 

the BOBF Test tool /BOBF/TEST_UI as the query enhancement concept is not part of the 
BOBF framework itself. Any query enhancement will not appear in the list of selection 
fields when testing with the test tool. Instead the query can be tested with a simple report 
executing the query with the new query attributes. Code example: 
 
 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

231 

231 

*&--------------------------------------------------------------* 

*& Report  ZREP_GENRES_QUERY_TEST 

*&--------------------------------------------------------------* 

*& Demonstartion of a generic result query enhancement 

*&--------------------------------------------------------------* 

REPORT  zrep_genres_query_test. 

 

DATA:  lo_srv          TYPE REF TO /bobf/if_tra_service_manager, 

       lt_selpar       TYPE /bobf/t_frw_query_selparam, 

       ls_selpar       TYPE /bobf/s_frw_query_selparam, 

       lt_req_attr     TYPE /bobf/t_frw_name, 

       lo_message      TYPE REF TO /bobf/if_frw_message, 

       lt_data         TYPE /scmtms/t_tor_q_fo_r, 

       ls_key          TYPE /bobf/s_frw_key, 

       lt_key          TYPE /bobf/t_frw_key, 

       ls_query_inf    TYPE /bobf/s_frw_query_info. 

 

CLEAR: ls_selpar, 

       lt_selpar, 

       lt_req_attr. 

 

* Get instance of service manager for TRQ 

lo_srv = /bobf/cl_tra_serv_mgr_factory=>get_service_manager( 

                                /scmtms/if_tor_c=>sc_bo_key ). 

 

*Get instances of TOR via Query 

ls_selpar-attribute_name = /scmtms/if_tor_c=>sc_query_attribute- 

                                 root-fo_data_by_attr-changed_by. 

ls_selpar-option         = 'EQ'. 

ls_selpar-sign           = 'I'. 

ls_selpar-low            = 'SCMSUPPORT'. 

APPEND ls_selpar TO lt_selpar. 

APPEND ls_selpar-attribute_name TO lt_req_attr. 

 

ls_selpar-attribute_name = 'ZENH_ENTRY_DATE'. 

ls_selpar-option         = 'EQ'. 

ls_selpar-sign           = 'I'. 

ls_selpar-low            = '20140610133000'. 

APPEND ls_selpar TO lt_selpar. 

APPEND ls_selpar-attribute_name TO lt_req_attr. 

 

ls_selpar-attribute_name = 'ZENH_CHNG_DATE'. 

ls_selpar-option         = 'EQ'. 

ls_selpar-sign           = 'I'. 

ls_selpar-low            = '20140610141800'. 

APPEND ls_selpar TO lt_selpar. 

APPEND ls_selpar-attribute_name TO lt_req_attr. 

 

BREAK-POINT. 

 

* Execute the query 

lo_srv->query( 

  EXPORTING 

    iv_query_key            = /scmtms/if_tor_c=>sc_query-root-                     

                              fo_data_by_attr  " Query 

*   it_filter_key           = " Key Table 

    it_selection_parameters = lt_selpar " Query Sel. Parameters 

*   is_query_options        = " Query Options 

    iv_fill_data            = abap_true                           

    it_requested_attributes = lt_req_attr " List of Names (e.g. Fi 

                                          " Fieldnames) 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

232 

232 

  IMPORTING 

    eo_message              = lo_message  " Message Object 

    es_query_info           = ls_query_inf" Query Information 

    et_data                 = lt_data 

    et_key                  = lt_key ). 

 

BREAK-POINT. 

 
Remark: The example query FO_DATA_BY_ATTR is implemented in a way that parameter 
IT_REQUESTED_ATTRIBUTES of the QUERY method must be provided with all attributes 
that the query shall return. This is done for performance reasons, i.e. it allows reading only 
the information that is really required without unnecessary overhead. You can see in the 
example code how this parameter (LT_REQ_ATTR) is build up while defining the selection 
criteria that will be passed to the query. The mentioned query is e.g. used as the data 
provider for the Freight Order POWL. When called in this context, it will only return those 
fields of the POWL result structure that are configured to be visible. This helps to reduce the 
runtime. 
 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

233 

233 

6.2 POWL (Personal Object Work Lists) 
This section describes how to create a new TM specific Personal Object Work List (POWL) 
and how to enhance existing standard POWLs provided with the standard TM application. In 
section 6.1 we have already seen how Generic Result Queries can be enhanced which are 
the data source for any POWL. As a first step we will take a look at how to create a new 
POWL. This allows exploring all involved technical concepts and components which are also 
relevant for enhancing existing POWLs. 
 

 
Picture: POWL components and their relation. 

 
The picture above shows an overview of the different POWL components and their relation. 
You will get to know all of these components and their usage in the following sections. 
 
Note that there is actually no explicit enhancement concept available for existing standard 
POWLs. In this case you will have to work with implicit enhancements (see section 4.5) to add 
required elements to a standard POWL. Creating a new POWL as a fist example provides 
useful hints at which places standard POWLs have to be adjusted to get enhancements done. 

6.2.1 Creating a new POWL 

As mentioned we will first of all create a new POWL to get to know the most important 
elements and basic technical concepts of a POWL.  
 
The following example will use the Generic Result Query FO_DATA_BY_ATTR as data 
source which was already enhanced by the additional fields ZENH_ENTRY_DATE and 
ZENH_CHNG_DATE in section 6.1.5. In general all POWLs use a Generic Result Query as 
data source. Besides the standard selection criteria and result attributes, the new example 
POWL will also allow using the enhancement fields as selection criteria and result attributes. 

6.2.2 The POWL Feeder Class 
The main access point for a POWL is the POWL Feeder Class. It contains the definition of the 
POWL’s selection criteria, the field catalog (i.e. the result structure) and the actions that can 
be executed from the POWL Toolbar for a selected set of object instances from the POWL 
result list. 
 
In TM a POWL Feeder Class is usually based on a query of a Business Object.  The 
relationship between a Business Object query (a Generic Result Query) and a POWL Feeder 
class is always one to one. So whenever there is no POWL Feeder Class making use of an 
existing Generic Result Query of a BO you will need a new POWL Feeder Class. 
 
You should also keep this in mind when creating BO Queries for POWL usage.  If you have 
two completely different requirements leading to different BO Queries, of course two different 
POWL Feeder Classes are required. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

234 

234 

If you have different business categories or usages for POWLs which share many common 
parts form a technical perspective, it makes sense to design one (technical) BO query which 
has one common technical POWL Feeder Class in the end. Based on this feeder class, you 
can separate your different usages or categories with corresponding POWL types. An 
example is the TOR Feeder class /SCMTMS/CL_UI_POW_FD_TOR, with separate POWL 
types for each BO Category. This example POWL Feeder Class provides selection criteria, 
result attributes and actions depending on the TOR Category, e.g. TO for Freight Order or FU 
for Freight Units. 
 
The following example implements a new POWL for Freight Orders. 
 
1) Create a new POWL Feeder Class with e.g. transaction SE24: The general naming 

convention followed in TM is /SCMTMS/CL_UI_POW_FD_[object name or abbreviation]. 
 
Example class: ZCL_ENH_UI_POW_FD_TOR. 
 
Class /SCMTMS/CL_UI_POW_FD_BASE must be defined as the super class for the 
POWL Feeder Class. Save and activate the new class. 
 

2) In the POWL Feeder Class constructor constants are used to specify the names and keys 
of all general attributes and elements of a POWL. In the standard TM POWL 
implementations these constants are usually defined in the standard constants interface 
/SCMTMS/IF_UI_POW_CONST. 
 
In our example we create a separate new constants interface to represent the constants 
required for the new POWL. With this separate constants interface it is not required using 
implicit enhancements for adjusting the standard constants interface with your own 
constants. Create the example constants interface as follows: 
 

 Start transaction SE24, enter the interface name ZIF_ENH_UI_POW_CONST in field 
Object Type and click on button Create. 
 

 On tab strip Attributes enter the following constants: 
 

Attribute Level Description 

CO_OUTPUT_STRUCTURE_NAME Constant Output list Structure Names 

CO_SELCRIT_STRUCTURE_NAME Constant Selection Criteria Structure 
names 

CO_ACTION_CLASS_NAME Constant Action class names 

CO_POWL_TYPE Constant POWL Types 

 

 Switch to the Source Code-based view (toggle button in the Class Builder, transaction 
SE24 tool bar) and make sure that the example constants interface is defined by the 
following code: 
 
*------------------------------------------------------------* 

* INTERFACE ZIF_ENH_UI_POW_CONST 

*------------------------------------------------------------* 

* Constants for the Demo Enhancement POWL 

*------------------------------------------------------------* 

INTERFACE zif_enh_ui_pow_const 

 

  PUBLIC . 

 

  CONSTANTS: 

    BEGIN OF co_output_structure_name, 

      zc_tor_resp TYPE struname VALUE 'ZENH_S_UI_POW_R_TOR', 

    END OF co_output_structure_name . 

  CONSTANTS: 

    BEGIN OF co_selcrit_structure_name, 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

235 

235 

      zc_tor_req TYPE  struname VALUE 'ZENH_S_UI_POW_S_TOR', 

    END OF co_selcrit_structure_name . 

  CONSTANTS: 

    BEGIN OF co_action_class_name, 

      zc_tor_act TYPE seoclsname VALUE 'ZCL_ENH_UI_ACTION_TOR', 

    END OF co_action_class_name . 

  CONSTANTS: 

    BEGIN OF  co_powl_type, 

      BEGIN OF enh_type, 

        zenh_tor TYPE powl_type_ty VALUE 'ZENH_TOR_POWL', 

      END OF enh_type, 

    END OF co_powl_type. 

 

ENDINTERFACE.                    "ZIF_ENH_UI_POW_CONST 

 
3) In the next step copy the following required structures from the standard TOR POWL and 

create a new action class. This will help a bit reducing the effort and time for creating the 
example. For your own implementations you can of course create and use your very own 
corresponding objects. 

 

 Selection Criteria: The structure will represent the Search Structure for the new 
POWL, i.e. it contains the list of attributes that will be available as selection criteria for 
the POWL queries. 
 

o Start transaction SE11 and enter /SCMTMS/S_UI_POW_S_TOR in field Data 
type on the initial screen. 

o Copy (Ctrl+F5) this structure to ZENH_S_UI_POW_S_TOR. 
o Save and activate the new structure.  

 

 Result Structure: The structure will represent the Result Structure for the new 
POWL, i.e. it contains the list of attributes that will be available to be displayed in the 
result list of the POWL. 
 

o Start transaction SE11 and enter /SCMTMS/S_UI_POW_R_TOR in field 
Data type on the initial screen.  

o Copy (Ctrl+F5) this structure to ZENH_R_UI_POW_R_TOR. 
o Save and activate the new structure. 

 

 Actions: The class will represent the Action Class for the new POWL, i.e. it contains 
the coding to handle all actions that can be executed on entries selected in the POWL 
result list. 

 
o Start transaction SE24 and enter class name ZCL_ENH_UI_ACTION_TOR in 

field Object type and click on button Create (F5) to create this class.  
o On tab Properties specify class /SCMTMS/CL_UI_ACTION_BASE as the 

super class for the new class. 
o Save and activate the new class. 

 
Alternative: Copy standard action class /SCMTMS/CL_UI_ACTION_TOR to the new 
class ZCL_ENH_UI_ACTION_TOR. With this procedure you simply reuse the 
action handling as implemented in the standard. In section 6.2.3 you can find an 
implementation example that shows how to implement the action class yourself. 

 
 

4) Go back to the POWL Feeder Class ZCL_ENH_UI_POW_FD_TOR and create a method 
CONSTRUCTOR as a public instance method. In the implementation of this POWL 
Feeder Class constructor, the following information is defined and provided: 
 
 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

236 

236 

Attribute Description 

BO_NAME The business object that is to be processed 
with the POWL. 

BO_QUERY_KEY The key of the business object query that will 
provide the data for the POWL. 

BO_ALTID_ATTRIBUTE_NAME Describes the attribute name of the result 
structure which is the alternative identifier of 
the business object. This attribute will be 
displayed as the first column in the POWL 
result list. Moreover, this column is fixed and 
will be displayed as a link (for further object 
based navigation). 

POW_OUTPUT_STRUCTURE_NAME Represents the output structure for the field 
catalog (based on the result structure of the 
output query or the data structure of the root 
node). All Standard POWL result structures 
start with /SCMTMS/S_UI_POW_R* 

POW_SELCRIT_STRUCTURE_NAME Represents the selection criteria structure for 
the selection criteria catalog (based on the 
query structure of the BO query). All Standard 
POWL query structures start with 
/SCMTMS/S_UI_POW_S*  

ACTION_CLASS_NAME (Optional) The class can be specified in case 
you want to use your very own action class to 
handle the actions on the POWL. 

BO_CATEGORY_ATTRIBUTE_NAME (Optional) Describes the attribute name of the 
result structure which contains a BO category 
(e.g. required for TRQ and TOR as these 
objects are used for different purposes 
represented by a corresponding category → 
serves as a “filter”). 

BO_KEY_ATTRIBUTE_NAME Describes the attribute name of the result 
structure which is used for generic navigation. 
This starts after you clicked on the generic 
link which is based on 
BO_ALTID_ATTRIBUTE_NAME. 

CONVERSION_CLASS_NAME (Optional) The class can be specified in case 
you want to use your very own conversion 
class. 

MV_REQUESTED_ATTRIBUTES Set to true in the example to indicate that only 
requested attributes (i.e. the attributes of the 
defined field catalog are requested and read 
from the database. This helps improving the 
performance. 

 
Use the following example code to implement the constructor method. Then save and 
activate the class. Within the coding you can see that it makes use of the constants 
defined in step 2 to specify the above listed attributes of the feeder class. 
 
METHOD constructor. 

* call the constructor of the super class 

  CALL METHOD super->constructor. 

 

* define BO to be represented by the POWL 

  ms_pow_profile-bo_name = /scmtms/if_tor_c=>sc_bo_name. 

 

* define the Generic Result Query to be used with the POWL 

  ms_pow_profile-bo_query_key = /scmtms/if_tor_c=>sc_query-root- 

                                fo_data_by_attr. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

237 

237 

* define the attribute of the BO to represent the alternative 

* id/key on the POWL 

  ms_pow_profile-bo_altid_attribute_name = /scmtms/if_tor_c=> 

                                   sc_node_attribute-root-tor_id. 

 

* define the attribute to represent the category of BO instances 

* Use Case e.g.: Only TOR instances of category Booking shall be 

* listed 

  ms_pow_profile-bo_category_attribute_name = /scmtms/if_tor_c=> 

                                  sc_node_attribute-root-tor_cat. 

 

* define the DDIC structure that represents the set of attributes 

* to be listed in the POWL result list 

  ms_pow_profile-pow_output_structure_name = 

                        zif_enh_ui_pow_const=> 

                        co_output_structure_name-zc_tor_resp. 

 

* define the DDIC structure that represents the set of selection 

* criteria attributes to beused for the POWL Query 

  ms_pow_profile-pow_selcrit_structure_name = 

                        zif_enh_ui_pow_const=> 

                        co_selcrit_structure_name-zc_tor_req. 

 

* define the class that represents the action class for the POWL, 

* i.e. the operations that can be triggered from the POWL for 

* selected Business Document in the POWL result list 

  ms_pow_profile-action_class_name = 

                        zif_enh_ui_pow_const=> 

                        co_action_class_name-zc_tor_act. 

 

* Conversion Class definition. Similar to an FBI View Conversion 

* Class it allows the conversion of time stamps into the three 

* parts date, time and time zone to be available as selection 

* criteria or it allows converting codes like e.g. Life Cycle 

* Status = 01 into a readable text representation, e.g. "open" 

  ms_pow_profile-conversion_class_name =  

                         /scmtms/if_ui_pow_const=> 

                         co_conversion_class_name-tor 

 

* make sure that onlz requested attributes are passed to the query 

* which helps improving performance 

  mv_requested_attributes = abap_true. 

 

* Important(!): initialize the POWL 

  CALL METHOD init( ). 

 

ENDMETHOD. 

 
In the example code for the constructor you can see that also a conversion class was 
defined (class /SCMTMS/CL_UI_POW_TOR). In this case it is the standard TOR 
conversion class that is referenced / assigned via the standard POWL constants 
interface. For the selection criteria it supports a conversion from time stamp fields into the 
corresponding parts date, time and time zone similar to the conversions available in FBI 
Views described in section 5.2.4. Example:  
 

 In the selection criteria structure you have a field CHANGED_ON defined as a 
time stamp. 
 

 The conversion class will check if there are fields available in the selection criteria 
structure with the name CHANGED_ON_D (date), CHANGED_ON_T (time) and 
CHANGED_ON_TZ (time zone). These fields have to be placed in a 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

238 

238 

corresponding Include with group name DATS to indicate that these fields will be 
involved in a date conversion as described (the group name is used to define the 
type of conversion). 

 
In the output structure, the same date conversion can be used as described above (i.e. 
using an Include with fields that follow the same kind of naming convention and the group 
name DATS). Moreover, for the output structure you can also use a code list conversion. 
Example: 
 

 In the output structure you have a field LIFECYCLE which represents the life 
cycle status of e.g. a Freight Order with value 00 = Draft, 01 = New, etc. (the 
values are e.g. defined in the domain of the related data element). 
 

 The conversion class will check if there is afield available in the output structure 
with the name LIFECYCLE_TXT. This field has to be placed in a corresponding 
Include with group name CODL to indicate that it will be involved in a code list 
conversion (again the group name is used to define the type of conversion). 
Instead of unclear values like 00, 01, etc. the clear text of a life cycle status will 
be displayed in the POWL result. 

 
5) Before we can redefine and implement some of the methods of the example feeder class 

ZCL_ENH_UI_POW_FD_TOR create the following new methods in this class. They 
encapsulate the coding for building the list of selection criteria and the field catalog for the 
POWL result list at runtime. 
 

 Create a new method GET_SEL_CRITERIA_FO in class with the following settings: 
 

Method Level Visibility Description 

GET_SEL_CRITERIA_FO Instance 
Method 

Protected Return selection criteria for 
category Freight Order. 

   

Parameter Type Typing Method Associated Type 

C_SELCRIT_DEFS Changing Type POWL_SELCRIT_TTY 

C_DEFAULT_VALUES Changing Type RSPARAMS_TT 

 
Use the following example coding to implement it:  
 

METHOD get_sel_criteria_fo. 

 

  DATA: ls_selcrit_defs     LIKE LINE OF c_selcrit_defs, 

        ls_default_values   LIKE LINE OF c_default_values, 

        ls_selcrit_ddfields LIKE LINE OF mt_selcrit_ddfields, 

        ls_pow_selcrit_mapp LIKE LINE OF mt_pow_selcrit_mapp. 

 

  LOOP AT mt_selcrit_ddfields INTO ls_selcrit_ddfields. 

*   define the general properties of each selection field 

    CLEAR ls_selcrit_defs. 

    ls_selcrit_defs-param_type = /scmtms/if_ui_pow_const=> 

                                 co_param_type-input_field. 

    ls_selcrit_defs-kind = 'S'.  

*   P = Parameter, S = Select Option 

    ls_selcrit_defs-allow_admin_change = abap_true. 

    ls_selcrit_defs-ref_table = ms_pow_profile- 

                                pow_selcrit_structure_name. 

    ls_selcrit_defs-ref_field = ls_selcrit_ddfields-fieldname. 

    ls_selcrit_defs-crittext = ls_selcrit_ddfields-scrtext_m. 

    ls_selcrit_defs-tooltip  = ls_selcrit_ddfields-scrtext_l. 

    ls_selcrit_defs-datatype = ls_selcrit_ddfields-rollname. 

    ls_selcrit_defs-allow_admin_change = abap_true. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

239 

239 

*   define specific properties for each field 

    CASE ls_selcrit_ddfields-fieldname. 

*     Fields for identifying the TOR instance 

      WHEN /scmtms/if_tor_c=>sc_query_attribute-root- 

                             fo_data_by_attr-tor_id. 

        ls_selcrit_defs-selname = 'P0001'. 

        ls_selcrit_defs-header = cl_wd_utilities=> 

        get_otr_text_by_alias( '/SCMTMS/UI_CMN/GENERAL_DATA' ). 

        ls_selcrit_defs-quicksearch_crit = abap_true. 

      WHEN /scmtms/if_tor_c=>sc_query_attribute-root- 

                             fo_data_by_attr-tor_type. 

        ls_selcrit_defs-selname = 'P0002'. 

        ls_selcrit_defs-header = cl_wd_utilities=> 

        get_otr_text_by_alias( '/SCMTMS/UI_CMN/GENERAL_DATA' ). 

        ls_selcrit_defs-quicksearch_crit = abap_true. 

      WHEN /scmtms/if_tor_c=>sc_query_attribute-root- 

                             fo_data_by_attr-tor_cat. 

        ls_default_values-selname = 'P0003'. 

        ls_default_values-kind    = 'P'. 

        ls_default_values-sign    = 'I'. 

        ls_default_values-low = /scmtms/if_tor_const=> 

                                sc_tor_category-active. 

        INSERT ls_default_values INTO TABLE c_default_values. 

        ls_selcrit_defs-read_only = abap_true. 

        ls_selcrit_defs-hidden    = abap_true. 

        ls_selcrit_defs-selname = 'P0003'. 

        ls_selcrit_defs-header = cl_wd_utilities=> 

        get_otr_text_by_alias( '/SCMTMS/UI_CMN/GENERAL_DATA' ). 

        ls_selcrit_defs-param_type = /scmtms/if_ui_pow_const=> 

                                     co_param_type-input_field. 

 

*     Organisational Data 

      WHEN /scmtms/if_tor_c=>sc_query_attribute-root- 

                             fo_data_by_attr-exec_org_id. 

        ls_selcrit_defs-selname = 'P0100'. 

        ls_selcrit_defs-header = cl_wd_utilities=> 

      get_otr_text_by_alias('/SCMTMS/UI_CMN/ORGANIZATIONAL_DATA'). 

      WHEN /scmtms/if_tor_c=>sc_query_attribute-root- 

                             fo_data_by_attr-exec_grp_id. 

        ls_selcrit_defs-selname = 'P0101'. 

        ls_selcrit_defs-header = cl_wd_utilities=> 

      get_otr_text_by_alias('/SCMTMS/UI_CMN/ORGANIZATIONAL_DATA'). 

      WHEN /scmtms/if_tor_c=>sc_query_attribute-root- 

                             fo_data_by_attr-purch_org_id. 

        ls_selcrit_defs-selname = 'P0102'. 

        ls_selcrit_defs-header = cl_wd_utilities=> 

      get_otr_text_by_alias('/SCMTMS/UI_CMN/ORGANIZATIONAL_DATA'). 

      WHEN /scmtms/if_tor_c=>sc_query_attribute-root- 

                             fo_data_by_attr-purch_grp_id. 

        ls_selcrit_defs-selname = 'P0103'. 

        ls_selcrit_defs-header = cl_wd_utilities=> 

      get_otr_text_by_alias('/SCMTMS/UI_CMN/ORGANIZATIONAL_DATA'). 

 

*     Admin data 

      WHEN /scmtms/if_tor_c=>sc_query_attribute-root- 

                             fo_data_by_attr-created_by. 

        ls_selcrit_defs-selname = 'P2000'. 

        ls_selcrit_defs-header = cl_wd_utilities=> 

        get_otr_text_by_alias('/SCMTMS/UI_CMN/ADM_INFO'). 

        ls_selcrit_defs-quicksearch_crit  = abap_true. 

      WHEN 'CREATED_ON_D'. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

240 

240 

        ls_selcrit_defs-selname = 'P2001'. 

        ls_selcrit_defs-header = cl_wd_utilities=> 

        get_otr_text_by_alias('/SCMTMS/UI_CMN/ADM_INFO'). 

      WHEN /scmtms/if_tor_c=>sc_query_attribute-root- 

                             fo_data_by_attr-changed_by. 

        ls_selcrit_defs-selname = 'P2002'. 

        ls_selcrit_defs-header = cl_wd_utilities=> 

        get_otr_text_by_alias('/SCMTMS/UI_CMN/ADM_INFO'). 

      WHEN 'CHANGED_ON_D'. 

        ls_selcrit_defs-selname = 'P2003'. 

        ls_selcrit_defs-header = cl_wd_utilities=> 

        get_otr_text_by_alias('/SCMTMS/UI_CMN/ADM_INFO'). 

 

*     Enhancement Selection Attribute 

      WHEN 'ZENH_ENTRY_DATE'. 

        ls_selcrit_defs-selname = 'P3003'. 

        ls_selcrit_defs-header = 'Enh. Entry Date'. 

        ls_selcrit_defs-quicksearch_crit = abap_true. 

 

      WHEN 'ZENH_CHNG_DATE'. 

        ls_selcrit_defs-selname = 'P3004'. 

        ls_selcrit_defs-header = 'Enh. Change Date'. 

        ls_selcrit_defs-quicksearch_crit = abap_true. 

 

      WHEN OTHERS. 

        CONTINUE. 

    ENDCASE. 

 

*   fill mapping table 

    ls_pow_selcrit_mapp-selname   = ls_selcrit_defs-selname. 

    ls_pow_selcrit_mapp-fieldname = ls_selcrit_ddfields-fieldname. 

    APPEND ls_pow_selcrit_mapp TO mt_pow_selcrit_mapp. 

    APPEND ls_selcrit_defs TO c_selcrit_defs. 

  ENDLOOP. 

 

* call standard parmeters – to add e.g. Max. Number of Rows 

* as an additional generic selection parameter 

  add_std_sel_crits( CHANGING 

                      c_selcrit_defs = c_selcrit_defs 

                      c_default_values = c_default_values ). 

 

ENDMETHOD. 

 
The method loops over the list of all potential selection criteria from the corresponding 
structure defined in the constructor of the feeder class. Within this loop the WHEN 
sections of the CASE instruction show how to set the properties of the selection 
attributes. More examples on how to set such properties can be found in the standard 
feeder classes. Finally the method returns the set of selection criteria that can be 
used to define POWL queries. 
 
The term “POWL query” is not to be mixed up with the technical Generic Result 
Query that represents the data source for the POWL. Here this term refers to the 
POWL queries that you can define on the User Interface, based on the POWL (see 
section 6.2.5). 

 
  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

241 

241 

 Create a new method GET_FIELDCATALOG_FO with the following settings: 
 

Method Level Visibility Description 

GET_FIELDCATALOG_FO Instance 
Method 

Protected Return output list for 
category Freight Order 

 

Parameter Type Typing Method Associated Type 

C_FIELDCAT Changing Type POWL_FIELDCAT_TTY 

 
Use the following example coding to implement it:  
 

METHOD get_fieldcatalog_fo. 

  DATA: ls_output_ddfields LIKE LINE OF mt_output_ddfields, 

        ls_fieldcat        LIKE LINE OF c_fieldcat. 

 

  LOOP AT mt_output_ddfields INTO ls_output_ddfields. 

    CLEAR ls_fieldcat. 

*   now set default layout for all other columns 

    ls_fieldcat-colid             = ls_output_ddfields-fieldname. 

    ls_fieldcat-col_visible       = abap_true. 

    ls_fieldcat-header_by_ddic    = abap_true. 

    ls_fieldcat-enabled           = abap_true. 

    ls_fieldcat-allow_filter      = abap_true. 

    ls_fieldcat-allow_sort        = abap_true. 

    ls_fieldcat-display_type      = /scmtms/if_ui_pow_const=> 

                                    co_display_type-textview. 

 

    CASE ls_output_ddfields-fieldname. 

      WHEN 'TOR_ID'. 

        ls_fieldcat-colpos = 1. 

        ls_fieldcat-col_visible = abap_true. 

        ls_fieldcat-fixed = abap_true. 

        ls_fieldcat-display_type = /scmtms/if_ui_pow_const=> 

                                   co_display_type-link_to_action. 

        ls_fieldcat-text_ref = ms_pow_profile- 

                               bo_altid_attribute_name. 

        ls_fieldcat-sort_order  =  '01'. 

      WHEN 'TOR_TYPE'. 

        ls_fieldcat-colpos = 2. 

        ls_fieldcat-col_visible = abap_true. 

 

*     Organizational Units 

      WHEN 'PURCH_ORG_ID'. 

        ls_fieldcat-colpos = 3. 

        ls_fieldcat-col_visible = abap_true. 

      WHEN 'PURCH_GRP_ID'. 

        ls_fieldcat-colpos = 4. 

        ls_fieldcat-col_visible = abap_true. 

      WHEN 'EXEC_ORG_ID'. 

        ls_fieldcat-colpos = 5. 

        ls_fieldcat-display_type = /scmtms/if_ui_pow_const=> 

                                  co_display_type-dropdown_by_key. 

        ls_fieldcat-col_visible = abap_true. 

      WHEN 'EXEC_GRP_ID'. 

        ls_fieldcat-colpos = 6. 

        ls_fieldcat-display_type = /scmtms/if_ui_pow_const=> 

                                  co_display_type-dropdown_by_key. 

        ls_fieldcat-col_visible = abap_true. 

 

*     Administrative Data 

      WHEN 'CREATED_BY'. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

242 

242 

        ls_fieldcat-colpos = 7. 

        ls_fieldcat-col_visible = abap_true. 

      WHEN 'CREATED_ON'. 

        ls_fieldcat-colpos = 8. 

        ls_fieldcat-col_visible = abap_true. 

      WHEN 'CHANGED_BY'. 

        ls_fieldcat-colpos = 9. 

        ls_fieldcat-col_visible = abap_true. 

      WHEN 'CHANGED_ON'. 

        ls_fieldcat-colpos = 10. 

        ls_fieldcat-col_visible = abap_true. 

 

*     Enhancement Fields 

      WHEN 'ZENH_ENTRY_DATE'. 

        ls_fieldcat-colpos = 11. 

        ls_fieldcat-col_visible = abap_true. 

 

      WHEN 'ZENH_CHNG_DATE'. 

        ls_fieldcat-colpos = 12. 

        ls_fieldcat-col_visible = abap_true. 

 

      WHEN OTHERS. 

        ls_fieldcat-col_visible = abap_false. 

 

    ENDCASE. 

 

    INSERT ls_fieldcat INTO TABLE c_fieldcat. 

  ENDLOOP. 

 

ENDMETHOD. 

 
Analog to the method for the selection criteria the method loops over the list of all 
potential fields which can be shown on the POWL result list (defined via the output 
structure in the constructor of the feeder class). Again the WHEN sections of the 
CASE instruction show how to set the different properties of the fields that will be 
added to the field catalog at runtime. Finally the method returns the desired field 
catalog. 
 
The corresponding fields will also be available in the POWL personalization where 
you can individually define which fields shall be visible in the POWL result list and 
which not (see section 6.2.5). 
 

6) In the next step we redefine some of the methods of the feeder class which have been 
inherited from the feeder super class /SCMTMS/CL_UI_POW_FD_BASE: 
 

 Class method IF_POWL_FEEDER~GET_SEL_CRITERIA: The coding of this POWL 
Feeder Class method specifies the set of selection criteria that will be available for 
defining POWL queries.  
 
The generic implementation provided in the mentioned super class will just take all 
fields from the structure ZENH_S_UI_POW_S_TOR to create the list of selection 
criteria at runtime. 
 
For the example POWL, redefine the method with the following coding which uses 
method GET_SEL_CRITERIA_FO created in step 5. Note that this method is then 
only called in case of the POWL Type being ZENH_TOR_POWL which is later 
defined in customizing and assigned to our new feeder class (see section 6.2.4). 
 
METHOD if_powl_feeder~get_sel_criteria. 

* depending on the POWL type the corresponding selection 

* criteria will be defined 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

243 

243 

  CASE i_type. 

 

    WHEN zif_enh_ui_pow_const=>co_powl_type-enh_type-zenh_tor. 

      get_sel_criteria_fo( 

         CHANGING 

           c_selcrit_defs   = c_selcrit_defs 

           c_default_values = c_default_values ). 

 

    WHEN OTHERS. 

*     in case given powl type is not to be treated specifically 

*     use the generic implementation of the super class, i.e. 

*     take all attributes from the selection criteria structure 

      CALL METHOD super->if_powl_feeder~get_sel_criteria 

        EXPORTING 

          i_username             = i_username 

          i_applid               = i_applid 

          i_type                 = i_type 

          i_langu                = sy-langu 

        IMPORTING 

          e_selcrit_defs_changed = e_selcrit_defs_changed 

          e_default_val_changed  = e_default_val_changed 

        CHANGING 

          c_selcrit_defs         = c_selcrit_defs 

          c_default_values       = c_default_values. 

  ENDCASE. 

 

ENDMETHOD. 

 
The CASE instruction in the above method implementation shows how you can reuse 
this method for different POWL types, i.e. depending on the POWL type the selection 
criteria is build up differently at runtime. This allows a reuse of one and the same 
POWL Feeder Class for different POWLs. 
 
You will see in the later customizing steps that POWL Feeder Class can be assigned 
to different POWL Types. E.g. standard class /SCMTMS/CL_UI_POW_FD_TOR 
serves for Freight Order, Bookings, Freight Units and others, i.e. all POWLs related to 
the technical BO TOR that is used to represent these kinds of business documents. 
 

 Class method IF_POWL_FEEDER~GET_FIELD_CATALOG: The coding of this 
POWL Feeder Class method specifies the set of fields that will be available as 
columns in the POWL result list. 
 
The generic implementation provided with the super class will just take all fields from 
the structure ZENH_S_UI_POW_R_TOR to create the field catalog at runtime. 
 
For the example POWL redefine the method with the following coding which uses 
method GET_FIELDCATALOG_FO created in step 5. Again this method is then only 
called in case of the POWL Type being ZENH_TOR_POWL which is later defined in 
customizing and assigned to our new feeder class (see section 6.2.4). 
 
METHOD if_powl_feeder~get_field_catalog. 

* depending on the POWL type the corresponding field 

* catalog will be defined 

  CASE i_type. 

    WHEN zif_enh_ui_pow_const=>co_powl_type-enh_type-zenh_tor. 

      get_fieldcatalog_fo( CHANGING c_fieldcat = c_fieldcat ). 

 

    WHEN OTHERS. 

*     in case given powl type is not to be treated specifically 

*     use the generic implementation of the super class, i.e. 

*     take all attributes from the field catalog structure 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

244 

244 

      CALL METHOD super->if_powl_feeder~get_field_catalog 

        EXPORTING 

          i_username              = i_username 

          i_applid                = i_applid 

          i_type                  = i_type 

          i_langu                 = i_langu 

          i_selcrit_values        = i_selcrit_values 

        IMPORTING 

          e_fieldcat_changed      = e_fieldcat_changed 

          e_visible_cols_count    = e_visible_cols_count 

          e_visible_rows_count    = e_visible_rows_count 

          e_default_technical_col = e_default_technical_col 

        CHANGING 

          c_fieldcat              = c_fieldcat. 

  ENDCASE. 

 

* add default Header for descriptions fields 

  add_std_description_label( CHANGING c_fieldcat = c_fieldcat )

. 

 

* set default output values 

  e_default_technical_col = abap_true. 

  e_fieldcat_changed = abap_true. 

  e_visible_cols_count = 10. 

  e_visible_rows_count = 15. 

 

ENDMETHOD. 

 
In both methods implemented so far in this step the CASE instruction shows how you 
can reuse this method for different POWL types, i.e. depending on the POWL type 
(that you can define in customizing and associate with the same feeder class) the set 
of selection criteria and the field catalog is build up differently at runtime.  
 
This helps implementing POWLs that are based on the same BO and Generic Result 
Query but shall return different BO Category Instances (e.g. one POWL type just 
handles Freight Orders category A while another POWL type uses the same feeder 
class but handles Freight Orders of category B). 
 

 Class method IF_POWL_FEEDER~GET_ACTIONS: Within this method you place 
coding that defines the set of actions that will be available to be executed via the tool 
bar of the POWL result list.  
 
For the example POWL redefine the method with the following coding. 
 
METHOD if_powl_feeder~get_actions. 

* get the actions to be available on the POWL tool bar 

  DATA: ls_action_def  LIKE LINE OF c_action_defs, 

        ls_act_choices TYPE powl_act_choice_sty, 

        lv_index       TYPE int4. 

 

* Define the availability of some standard actions. Their 

* properties are finally defined in method GET_ACTIONS of 

* the super class. 

  mv_action_open    = abap_true. 

  mv_action_display = abap_true. 

  mv_action_copy    = abap_true. 

  mv_action_create  = abap_true. 

  mv_action_delete  = abap_true. 

  mv_action_open_bd = abap_true. 

 

* Disable or enable certain standard actions 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

245 

245 

  CASE i_type. 

    WHEN zif_enh_ui_pow_const=>co_powl_type-enh_type-zenh_tor. 

*     there shall be e.g. no DELETE action on this POWL 

      mv_action_delete  = abap_false. 

 

    WHEN OTHERS. 

 

  ENDCASE. 

 

* call super class to take over default actions 

  CALL METHOD super->if_powl_feeder~get_actions 

    EXPORTING 

      i_username        = i_username 

      i_applid          = i_applid 

      i_type            = i_type 

      i_selcrit_para    = i_selcrit_para 

      i_langu           = i_langu 

    IMPORTING 

      e_actions_changed = e_actions_changed 

    CHANGING 

      c_action_defs     = c_action_defs. 

 

* keep in mind, how many actions are alreday available 

* at this point in time. 

  lv_index = lines( c_action_defs ). 

 

* Define further actions depending on the POWL Type 

  CASE i_type. 

    WHEN zif_enh_ui_pow_const=>co_powl_type-enh_type-zenh_tor. 

*     add the action to claculate charges 

      CLEAR ls_action_def. 

      lv_index                    = lv_index + 1. 

      ls_action_def-placementindx = lv_index. 

      ls_action_def-cardinality   = 'S'. 

      ls_action_def-placement     = 'B'. 

      ls_action_def-actionid      = /scmtms/if_ui_tor_c=> 

                                sc_action-calc_transp_charges. 

      ls_action_def-text          = cl_wd_utilities=> 

                                    get_otr_text_by_alias( 

                     '/SCMTMS/UI_CMN/CALC_TRANSP_CHARGES' ). 

      ls_action_def-tooltip       = cl_wd_utilities=> 

                                    get_otr_text_by_alias(  

                     '/SCMTMS/UI_CMN/CALC_TRANSP_CHARGES' ). 

      ls_action_def-enabled           = abap_true. 

      INSERT ls_action_def INTO TABLE c_action_defs. 

 

*     add an enhancement action that was added to the TOR BO 

      CLEAR ls_action_def. 

      lv_index                    = lv_index + 1. 

      ls_action_def-placementindx = lv_index. 

      ls_action_def-cardinality   = 'S'. 

      ls_action_def-placement     = 'B'. 

      ls_action_def-actionid      = 'ZENH_MAINTOOLBAR_ACTION'. 

      ls_action_def-text          = 'Enhancement Action'. 

      ls_action_def-tooltip       = 

                         'Tooltip for the Enhancement Action'. 

      ls_action_def-enabled           = abap_true. 

      INSERT ls_action_def INTO TABLE c_action_defs. 

 

    WHEN OTHERS. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

246 

246 

  ENDCASE. 

 

ENDMETHOD. 

 
First of all this method calls method GET_ACTIONS of the super class to define 
some standard actions on the POWL tool bar. Moreover it adds two specific actions 
to the tool bar, again depending on the POWL Type. In the example, an action to start 
the Charge Calculation on found Freight Orders as well as an Enhancement Action 
(see example from section 5.4.4) is added to show how you can add required actions 
to the POWL tool bar.  

6.2.3 The POWL Action Class 

The POWL Action Class is used to handle the execution of the actions assigned to the tool 
bar of the POWL result list. The name of the class to be used is defined in the constructor of 
the related POWL feeder class (see step 2 & 4 in the last section 6.2.1). 
 
In general, method HANDLE_ACTION is the only method to be implemented here. At 
runtime, the Action ID and the data of the objects selected on the POWL result list is 
available. This can be used to execute e.g. related BOBF actions that are either executed e.g. 
for all selected or only the first selected object on the POWL result list. 
 
In section 6.2.1 Action Class ZCL_ENH_UI_ACTION_TOR was created which inherits from 
the Action Super Class /SCMTMS/CL_UI_ACTION_BASE. While standard actions like New, 
Copy, Edit, Display, etc. are handled in method START_POWL_ACTION of the supper class, 
any other actions care handled directly in method HANDLE_ACTION of the Action Class. 
 
The following lines of code provide an example on how to implement the method to handle 
the action CALCULATE_TRANSPORTATION_CHARGES and the Enhancement Action 
ZENH_MAINTOOLBAR_ACTION that was described in the UI Enhancements section of this 
document. Both actions have been also prepared in method GET_ACTIONS of the POWL 
Feeder Class. 
 
METHOD handle_action. 

 

  FIELD-SYMBOLS: <ls_tor_root_key> TYPE /bobf/s_frw_key. 

 

  DATA: lv_error_exists TYPE boole_d, 

        lv_do_save      TYPE boole_d, 

        lo_message      TYPE REF TO /bobf/if_frw_message, 

        lt_key          TYPE /bobf/t_frw_key. 

 

  CASE iv_action_id. 

 

    WHEN /scmtms/if_ui_tor_c=>sc_action-calc_transp_charges. 

*     Action / Button: Calculate Transportation Charges 

*     The calculation is executed for all documents marked 

*     in the POWL result list 

      IF it_keys IS INITIAL. 

        RETURN. 

      ENDIF. 

*     Execute the TOR action CALCULATE TRANSPORTATION CHARGES 

      do_action( 

            EXPORTING 

              iv_act_key    = /scmtms/if_tor_c=>sc_action-root- 

                              calc_transportation_charges 

              it_key        = it_keys 

            IMPORTING 

              ev_error      = lv_error_exists ). 

*     If all calculations were successfull, 

*     save the corresponding changes 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

247 

247 

      IF lv_error_exists IS INITIAL AND iv_source = co_source_powl. 

        lv_do_save = abap_true. 

      ENDIF. 

 

    WHEN 'ZENH_MAINTOOLBAR_ACTION'. 

*     Action / Button: Enhancement Action. The action is only 

*     executed for the first document marked in the POWL result list 

      READ TABLE it_keys ASSIGNING <ls_tor_root_key> INDEX 1. 

      IF sy-subrc IS INITIAL. 

        CLEAR lt_key. 

        APPEND <ls_tor_root_key> TO lt_key. 

*       Execute the TOR action CALCULATE TRANSPORTATION CHARGES 

        do_action( 

              EXPORTING 

                iv_act_key    = zif_enh_tor_c=>sc_action-root- 

                                zenh_maintoolbar_action 

                it_key        = lt_key 

              IMPORTING 

                ev_error      = lv_error_exists ). 

      ENDIF. 

 

    WHEN OTHERS. 

 

  ENDCASE. 

 

* In case a SAVE is required 

  IF lv_do_save IS NOT INITIAL. 

    mo_tramgr->save( IMPORTING eo_message  = lo_message ). 

    mo_tramgr->cleanup( ). 

    add_message( io_message = lo_message ). 

  ENDIF. 

 

ENDMETHOD. 

 

6.2.4 The basic POWL Customizing 

In the previous sections, the coding foundation for a new POWL has been described and 
created. To really see and use the new POWL on the TM UI, customizing settings need to be 
done which will ensure that the POWL will be visible for users with a specific role and in the 
correct application area. The POWL created in section 6.2 handles Freight Orders. We will 
therefore assign it to the corresponding application area Freight Order Management.  
 
1) Transaction POWL_TYPE: The transaction registers the POWL Feeder Class and adds 

a description that is used in the POWL dialog for creating user specific POWL query 
definitions. 
 

 Start transaction POWL_TYPE and create a new entry as follows: 
 

Field Value 

Type ZENH_TOR_POWL 

Description Enhancement TOR POWL Type 

Feeder Class ZCL_ENH_UI_POW_FD_TOR 

Sync. Call (not set) 

No Msg. Wrapping (not set) 

 

 Save the new entry. 
 

2) Transaction POWL_TYPER: The transaction assigns the POWL Type (see step 1) to a 
PFCG Role, i.e. all users assigned to this role will be able to see the new POWL in the 
application area to be specified. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

248 

248 

 

 Start transaction POWL_TYPER and create a new entry as follows: 
 

Field Value 

Application SCMTMS_POWL_FO 

Role SAP_QAP_TRANSPORTATION_MANAGER 

Type ZENH_TOR_POWL 

Description Demo Enh. TOR POWL Type 

 

 Save the new entry. 
 

Note that you will only see the new POWL on the SAP TM User Interface if your user has the 
PFCG role assigned ( SU01) that is used in the above customizing entry. There is also 
transaction POWL_TYPEU available which allows assigning the POWL to a specific user, i.e. 
it allows further restricting the visibility of the POWL to a specific set of users. 
 
With this two customizing entries in place you can already specify a new POWL Query on the 
TM User Interface. How to do this is described in the next section.  

6.2.5 Creating POWL Queries 
Start the NetWeaver Business Client (transaction NWBC) and choose the role that the 
example POWL Type ZENH_TOR_TYPE is assigned to (make sure that your user has this 
role assigned in e.g. transaction SU01). Navigate to Freight Order Management → Road → 
Overview Road Freight Orders. In the POWL Result List section you can now click on the link 
Define New Query. The following guided procedure will request you to enter all relevant 
parameters for specifying a new POWL Query. 
 

 
Picture: Define a new POWL Query. 

 
1) Select Object Type: In field Select Object Type choose the entry Enhancement TOR 

POWL Type (which is nothing else but the description of the POWL type that was 
customized in section 6.2.4. Click on button Next. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

249 

249 

 
Picture: Select Object Type (POWL Type). 

 
2) Maintain Criteria: On this screen of the guided procedure you can define default values 

for a set of selection criteria. Here, all selection criteria are visible that were specified in 
method GET_SEL_CRITERIA of the underlying POWL Feeder Class. Note that the two 
enhancement fields that were added to the query are now available as selection criteria 
too. 

 

 
Picture: Maintain Selection Criteria. 

 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

250 

250 

In the example we just leave all fields blank by default except the Maximum Number of 
Hits which is set to 500. As indicated you can define default values here which can also 
be changed later on. When all required default / predefined values are specified, click on 
button Next again. 

 
3) Query Description and Category: On the final screen you enter a Query Description, e.g. 

New Enhancement Demo Query and set the flag Activate Query. 
 

 
Picture: Query description and new category. 

 
In the example we want to assign the new query to its own category. Click on button 
Create New Category to create a new category for the query. 
 

 
Picture: Entering a new category. 

 
Make sure that the new category is then selected on the previous screen.  
 

4) Now you can click on button Finish. The new POWL Query is now assigned to the Freight 
Order Management application and can be seen on the User Interface. The final result of 
this example looks as follows: 
 

 
Picture: The final new POWL Query. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

251 

251 

In the picture above you can see the POWL Query displaying a result where one found 
document is selected. The data of this document also contains entries for the extension 
fields that were added to the involved Generic Result Query. Moreover, in the POWL tool 
bar you can see the two actions that were added in addition to the standard actions. The 
example POWL can now be personalized like any other standard POWL. 
 

5) Once the new POWL Query is up and running you can further adjust and personalize it 
via a settings dialog. Click on the settings button on the right side of the POWL tool bar 
(the last button) to start the dialog: 
 

 
Picture: Starting the Settings Dialog for a POWL Query. 

 

 
Picture: Settings Dialog for POWL Query. 

 
On the dialog you can find tab strips that allow setting different aspects of the POWL 
Query. In the topmost toolbar you can define and manage (save, delete) your settings as 
views that you can then directly choose on the POWL Queries result list. So you can e.g. 
create such views to show documents which are relevant in a specific business case. The 
following settings can be done: 
 

 Column Selection: You can define which available columns from the field catalog 
shall be shown on the result list. Moreover you can define or adjust the sequence 
of the columns. 
 

 Sort: Allows defining a set of sort criteria, i.e. a list of columns that the sorting of 
the results shall be based on. For each sorting column you can define whether 
sorting shall be done ascending or descending. 

 
  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

252 

252 

 Calculation: This allows setting up a calculation for available columns, e.g. the 
minimum, maximum, totals or mean value of a column in the result list. The 
calculation figures are displayed as additional rows in the result list that are 
marked with a different background color (similar to an ALV control). 

 

 Filter: Similar to Sort this allows setting up filters on a set of columns to restrict 
the result list to specific entries. 

 

 Display: This allows setting e.g. the number of visible rows and columns in the 
result list and some general layout settings. 

 

 Print Version: These settings determine parameters that shall be used when 
printing a POWL result list, e.g. the scaling, margins and page size of a printout. 

 

6.2.6 Additional POWL Customizing 

In section 6.2.4 the basic customizing was described required to display the example POWL 
on the UI. In transaction POWL_TYPE a new POWL Type was defined and assigned to the 
newly created POWL Feeder Class. Then in transaction POWL_TYPER the POWL Type was 
assigned to a specific PFCG role to make it visible for users that have this role assigned and 
logon with in the SAP TM System. 
 
There are some more customizing settings that can be created in the context of a POWL and 
related POWL queries: 
 

1. Assign a POWL to a specific User with transaction POWL_TYPEU: This allows an 
even more fine granular assignment of a POWL to a specific user. 
 

 
Picture: Assigning a POWL Type to a specific user. 

 
2. Create a so called Admin Work List. They can be defined to be visible in the standard 

overviews, i.e. they can be used to create a standard set of POWL Queries which are 
always available and visible in contrast to a POWL Query that a User configures for 
himself as described in section 6.2.5. Use transaction POWL_QUERY to define such 
Admin Work Lists. 
 

 
Picture: Defining an Admin Work List Query in POWL_QUERY. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

253 

253 

In transaction POWL_QUERY you can also define the refresh behavior of the POWL 
Query (e.g. manual refresh only or refresh on every page visit, synchronous or 
asynchronous refresh). Moreover a predefined layout can be provided with a layout 
variant that you can e.g. create via the button Layout Variant in the tool bar of the 
transaction. 
 

3. Similar to the mentioned transactions POWL_TYPER and POWL_TYPEU, the 
transactions POWL_QUERYR and POWL_QUERYU allow assigning a Admin Work 
List query to a PFCG Role or a user respectively. 
 

 
Picture: Assigning an Admin Work List Query to a PFCG Role (POWL_QUERYR). 

 
When assigning a query to a PFCG Role in transaction POWL_QUERYR you can 
also define the position of the query within a set of queries of the same category by 
specifying a corresponding Category Sequence Number, Query Sequence Number 
and a Tab Sequence Number. 
 
The Category Sequence Number defines the category that you want to display the 
query in. Query Sequence Number and Tab Sequence Number set the query position 
within the POWL Category. 
 

A Category can be defined in customizing via the following path: SPRO  Cross 

Application Components  General Application Functions  Generic SAP Business 

Suite Functions  Personal Object Worklist  Cockpit for POWL Administration. 

 
In transaction POWL_QUERYU you provide the same entries but provide a specific 
user name instead of a PFCG role. Again this allows a more fine granular assignment 
of such a POWL Query to a specific user. 

 

6.2.7 Enhancing a standard POWL 

Based on the example POWL that was created from scratch in sections 6.2.2 to 6.2.4 you 
could already see the most important parts and places in the coding of a POWL. The example 
indicates how to implement a completely new POWL. But many customers and partners ask 
for a way how to extend existing standard POWLs without necessarily having to create all the 
code for feeder- and action classes and even implement a completely new Generic Result 
Query, etc. (this makes of course sense when none of the standard POWLs really fulfills the 
requirements). 
 
Well, the first answer to this question is that there is actually no explicit enhancement concept 
for existing standard POWLs. But nevertheless, also standard POWLs can be enhanced by 
using the Query Enhancement mechanism described in section 6.1 and using implicit 
enhancement at certain places in the POWL coding (see section 4.5). The example with the 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

254 

254 

completely new POWL contains all parts and coding places that you need to know and take 
into consideration for enhancing a standard POWL. The basic enhancement steps: 
 

1. Enhance the Generic Result Query of the standard POWL (you can find the used 
query in the POWL Feeder Class Constructor) as described in section 6.1.5). 
 

2. Identify the selection criteria and result structure of the standard POWL (remember 
that this again can be found in the constructor of the POWL Feeder Class) and place 
the enhancement fields into these structures via a new (or an existing) Append. 
 

3. Enhance method IF_POWL_FEEDER~GET_SEL_CRITERIA of the POWL Feeder 
Class. The coding of this method specifies the set of selection criteria that will be 
available for defining POWL queries. 
 

 It returns the defined selection criteria Meta Description in changing 
parameter C_SELCRIT_DEFS. You can use e.g. a Post- Method (implicit 
enhancement) to add required code for adding the new enhancement fields 
to the list of selection criteria in the mentioned changing parameter. 
 

 You can also adjust or remove the Meta Description of the standard selection 
criteria there, e.g. adjusting the grouping, representation, label texts, etc. 
 

 How this is done is indicated in the example of section 6.2.2, step 5 where 
e.g. two additional enhancement fields are added to the selection criteria list. 
In your coding you should make sure that the additional fields are only added 
for the required POWL Types (in the example and other standard 
implementations the POWL Type is distinguished via a CASE statement). 

 

 Changing parameter C_DEFAULT_VALUES allows e.g. programmatically 
adding default values for the new (and existing) selection criteria attributes. 
 

4. Enhance class method IF_POWL_FEEDER~GET_FIELD_CATALOG of the POWL 
Feeder Class: The coding of this method specifies the set of fields that will be 
available as columns in the POWL result list. 
 

 It returns the defined output field catalog Meta Description in changing 
parameter C_FIELDCAT. Again you can use e.g. a Post Method (implicit 
enhancement) to add the required code for adding the new enhancement 
fields to the list of output attributes in the mentioned changing parameter. 
 

 You can also adjust or remove the Meta Description of the standard output 
attributes there, e.g. adjusting the display type, header texts, column position, 
visibility, etc. Take a look at the constants defined in the standard POWL 
Constants Interface /SCMTMS/IF_UI_POW_CONST. Here you can find 
constants for e.g. display types (CO_DISPLAY_TYPE) and parameter types 
(CO_PARAM_TYPES) which you can reuse to set the properties of output 
attributes.  
 

 Review the example of section 6.2.2, step 6 which indicates how this can be 
done. Here the same enhancement fields are added to also have them 
available as attributes in the result list of the POWL. Just like for the selection 
criteria your code should make sure that the additional fields are only added 
for the required POWL Types (in the example and other standard 
implementations the POWL Type is distinguished via a CASE statement). 

 
5. Enhance class method IF_POWL_FEEDER~GET_ACTIONS: Within this method you 

can add coding (e.g. via a Post Method) that defines a set of additional actions to be 
available on the POWL tool bar. Note that this method only defines what actions shall 
be available and not how they are executed. This is done in the POWL Action Class 
as indicated in the example of section 6.2.3. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

255 

255 

 

 It returns the defined actions and their properties in changing parameter 
C_ACTION_DEFS. You may use e.g. a Post Method (implicit enhancement) 
to add further required action definitions in the mentioned changing 
parameter. 
 

 You can also adjust properties of the standard actions, e.g. adjusting the text 
tool tip display type, header texts, the sequence of the actions on the tool bar, 
etc. For each action you need to make sure that it gets an Action ID 
assigned. This will be used by the POWL Action Class implementation to 
identify the action to be executed at runtime. 

 

 Again the example of section 6.2.2, step 5 indicates how this can be done. 
Here in addition to some standard actions, two more actions are added to the 
POWL tool bar. Just like before you can use the POWL Type (available in the 
mentioned Feeder Class method) in a CASE statement to e.g. show certain 
actions only for specific POWL types. 

 
6. Finally you can enhance HANDLE_ACTION to react on the execution of newly added 

actions, i.e. here you identify the Action ID and specify the coding that shall be 
executed for each action. Again you may use e.g. a Post Method (implicit 
enhancement) to add the coding for your own actions. The example for the 
implementation of a POWL Action Class from section 6.2.3 indicates how to 
implement this. 

 
With these basic steps you can also enhance or adjust standard POWLs to your specific 
needs. As mentioned there is no explicit enhancement concept but implicit enhancements 
help in this case to get required additional coding implemented. Depending on the use case it 
makes sense to just enhance a standard POWL as described. On the other hand, in more 
complicated use cases it might be reasonable to implement your very own POWL with a 
Generic Result Query and other parts that are specifically designed for this. 
 
Performance is always an important (if not the most important) aspect of any enhancement or 
implementation of a POWL. Make sure that you enhance or implement in this area in a way 
that you provide performant coding to your users. 
 

6.2.8 POWL Maintenance Reports 
For administration purposes there is a list of reports available that allow resetting or displaying 
certain information of POWLs. They can be useful during development or e.g. when having to 
clear inconsistencies in POWL configurations, buffered data, etc. Nevertheless, they should 
be handled with care and only be used by experienced administrators. 
 

Report Comment 

POWL_D01 Delete Queries from Database. 

POWL_D02 Show POWL Design Information. 

POWL_D03 Check the consistency of POWL Table Entries. 

POWL_D04 Delete cached selection criteria for Admin Queries. 

POWL_D05 Delete POWL Check Results. 

POWL_D06 Activate Derived Queries 

POWL_D07 Delete Shadowing Entries 

POWL_D08 Delete Admin Layouts 

POWL_D09 Delete Default Layout Mapping 

 

6.2.9 POWL Performance 
POWLs are the main entry point for end users to access data in SAP TM. They use the 
selection criteria of POWL Queries to e.g. select the documents they are responsible for. 
Depending on the selection criteria the result of a POWL Query can be quite large and may 
contain e.g. documents that are not required any longer as they are already finalized, etc. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

256 

256 

Experience shows that many times the POWL Queries return more result records than 
actually necessary with the effect that users experience a rather slow performance of the 
POWLs. To make sure that users get the right amount of data in a performant way, consider 
the following measures for improving the performance. 
 

Indexes for the most common selection criteria 
Although the standard TM delivers a set of (secondary) indexes for most common (standard) 
attributes, your POWL Query might be defined in a way that it selects its result data mainly via 
attributes which are not covered by a secondary index. 
 
For improving the POWL Query performance it can make sense to add secondary indexes on 
additional attributes. For identifying the right database table attribute connected with the 
POWL Query selection criteria you can do e.g. the following (provided that the BOPF Query 
used by the POWL is implemented using the super class /SCMTMS/CL_Q_SUPERCLASS). 
 
In method DO_SELECT_NO_SUBQUERY or DO_SELECT_WITH_SUBQUERY the actual 
SELECT-Statement of the query is implemented and executed. Set a break-point here and 
take a look at the SELECT that is being executed at runtime. This helps finding the right 
attribute of the right database table. In the simplest case, the used BOPF Query only 
accesses a single BO node, i.e. a single database table. It might be a bit more difficult the 
right database table attribute in case the SELECT-Statement contains joins over multiple 
tables. 
 
When you have identified the right database table and attribute, you can create a 
corresponding secondary index for it which helps accelerate the POWL Query execution. 
 
But keep in mind that a database table should not have too many indexes. When attributes of 
database table records are changed or records are added, the affected indexes are updated 
too. With too many indexes in place it can actually happen that the performance even slows 
down due to the significant overhead of keeping the indexes consistent and up-to-date. 
Moreover, it might make sense to do an SQL Trace with e.g. transaction ST05 to determine 
and verify that your new index is actually used by the database to access the data. 
 
 

Using Calculated Dates in POWL Query definition 
An additional index on a database table attribute can help to improve the performance of the 
POWL Query. But in many cases customers, partners and end users define POWL Queries 
that simply select too many data records. For example, a user would like to see only the 
Freight Order of the last 30 days in his or her responsibility. Instead of changing the POWL 
Query frequently by adjusting the provided date attributes, the POWL Framework provides a 
feature that allows defining so called Calculated Dates.  
 
The following example is based on the Road Freight Order POWL and shows how to use the 
Calculated Dates feature which can be used for restricting the amount of records returned by 
a POWL Query automatically to only those records (documents) that are within a certain time 
frame (and fulfill other provided selection criteria) which in turn helps improving the 
performance. 
 

1. Start transaction NWBC to start the NetWeaver Business Client and choose a 
corresponding role to get to the SAP TM User Interface. Then navigate to Freight 
Order Management  Road  Overview Road Freight Orders. 
 

2. Click on the link for POWL Query All Road Freight Orders (make sure that it returns a 
reasonable amount of result records). The query should now come back with a set of 
documents that were found based on the given selection criteria. 
 

3. Now click on the link Change Query to adjust the given selection criteria. 
 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

257 

257 

 
 
 
 

   



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

258 

258 

7 Enhancing Print Forms 
SAP Transportation Management makes use of Output Management to print, fax or email 
various documents such as Forwarding Instructions, Pro Forma Freight Invoices, Air Waybills 
and many more. The TM standard provides predefined, PDF-based forms (SAP Interactive 
Forms) for this kind of documents that you can find in transaction SFP (Form Builder) by 
using the F4-Help in field Form on the initial screen and searching for /SCMTMS/*. 
 
The data to be used on a form is read from the TM backend via a so called printing class that 
passes this data on to a predefined form interface. This interface contains the definition of 
fields (e.g. header attributes of a Forwarding Order) and deep structures (e.g. item data of a 
Forwarding Order) to be placed on the form. The layout and look & feel of such forms are 
defined with the help of the Adobe LiveCycle Designer. 
 
SAP Transportation Management uses an Output Management Adapter for BOPF Business 
Objects to automate the output (automated backend or manual front end output) of the print 
forms. This adapter makes use of the Post Processing Framework (PPF) for generating and 
processing outputs. How e.g. an external communication (print, fax, email) is done is defined 
in related customizing (Output Management is moreover used for A2A, B2B, NetWeaver Alert 
and Workflow Task communication). 
 
The provided standard forms may not contain all information required by customers or the 
layout might not match the requirements. For example there are customer specific extension 
fields on business object level that shall be also printed with a form or the layout needs to be 
adjusted, e.g. changing the sequence of fields or adding a company logo. 
 
In the following sections we see how to enhance existing forms and how to create completely 
new forms. Moreover the required configuration and customizing of Output Management and 
PPF will be shown based on a working example. 
 

7.1 Enhancing a standard form 
The standard forms delivered with SAP Transportation Management should only serve as a 
template, i.e. you should not change the standard form itself. It is recommended to copy the 
standard form to be used and add all required content to this new form. In the following simple 
example we will use a copy of the standard print form /SCMTMS/FP_FFDOC (TM Forwarding 
Instructions). We will keep the standard printing interface and printing class and not replace it 
with corresponding copies ( the second example will show how to create a completely new 
form from scratch including the creation of a new printing interface and a printing class). 

 

7.1.1 Enhancing the involved BO(s) 

A form might require additional standard fields that are not yet used on the form or customer-
specific fields were added to a business object that shall be e.g. printed with a related form. In 
our example the Forwarding Order BO (/SCMTMS/TRQ) is the source of data from where the 
form will get the content to be printed. 
 
In general, multiple BOs and/or database tables could serve as data source for a form but 
corresponding Output Management Actions will be only assigned with a leading BO (node) 
from where you can trigger them). 
 
As a first step we add the following customer-specific extension fields to the Root node of the 
BO (review section 3.3.4 for details on how to create extension fields on a business object). 
This is of course an optional step. Of course you could also add existing standard fields to a 
form: 
 
 
 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

259 

259 

Component Typing Method Component Type 

ZENH_ENTRY_DATE Types /SCMTMS/DATETIME 

ZENH_SALESORG_ID Types /SCMTMS/SALES_ORG_ID 

ZENH_APPROVED Types FLAG 

 
In the following steps we will bring these extension fields onto a copy of print form 
/SCMTMS/FP_FFDOC (TM Forwarding Instructions). In the described example, we follow a 
bottom-up approach, i.e. we start with some additional fields on a BO to get them to the print 
form.. 

7.1.2 Copying the standard form 
First of all create a copy of the standard form /SCMTMS/FP_FFDOC as follows: 
 
1) Start transaction SFP, select radio button Form and enter the form to be copied in the 

related input field (or use the F4-Help of the input field to find the form). 
 

2) In the menu bar select Form Object → Copy… or press CTRL+F5. 
 

3) On the following popup screen, enter the new name for the copy of the form. Example: 
ZENH_FP_FFDOC. 

 

 
Picture: Creating a copy of a standard form. 

 
4) On the following popup, define a package where to store the new copy. Then save the 

form and go back to the initial screen of transaction SFP, activate the new form.  
 

 
Picture: Activating the new form. 

 
5) Such a new copied form can now already be used in a printing configuration (Output 

Management / PPF) just like the original standard form (We’ll see how to do this kind of 
configuration in section 7.4). 

 

7.1.3 Enhancing the Print Structure of a Form 

In the second step we place the extension fields in the print structure of the form. The print 
structure is represented by a corresponding DDIC structure that defines the data which can 
be placed on the form. The definition can be found via the form interface. To identify the 
underlying technical DDIC structure of the form’s print structure execute the following steps: 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

260 

260 

1) Start transaction SFP and display your form.  
 

 
Picture: Display a form via transaction SFP. 

 
2) On the following screen, navigate to tab strip Properties and double click on the interface 

mentioned there. The interface contains the data structures that the form uses to 
represent its content. 
 

 
Picture: Navigate to the interface of the form. 

 
3) You can now see the details of the interface. Navigate to tab strip Interface. On the left 

side you can find the content and details of the interface represented as a tree structure. 
The example interface is /SCMTMS/FP_IF_FFDOC. In the tree open the following path:  
/SCMTMS/FP_IF_FFDOC → Form Interface. Then double click on the entry Import. 
 
On the right side you can see now the parameter IS_PRINTOUT with its corresponding 
DDIC Type /SCMTMS/S_PRINT_FFDOC in column Type Name. Double click on this 
DDIC structure to edit it as described in the next step. 

 

 
Picture: Identifying the content DDIC structure of the form. 

 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

261 

261 

4) After having double clicked on the DDIC structure /SCMTMS/S_PRINT_FFDOC, it will 
open in the DDIC editor (transaction SE11). Here we can now add the customer specific 
fields to be placed on the form. On the button bar, click on Append Structure… for 
creating a new Append. On the following popup enter the Append name. Example: 
 

Append Name ZENH_FP_FFDOC 

Short Description Append for additional fields on form /SCMTMS/FP_FFDOC 

 
Add following fields in the new Append. Then save and activate the Append. 
 

Component Typing Method Component Type 

ZENH_ENTRY_DATE Types /SCMTMS/DATETIME 

ZENH_SALESORG_ID Types /SCMTMS/SALES_ORG_ID 

ZENH_APPROVED Types FLAG 

 

 
Picture: The DDIC structure of the form with the new Append. 

 
5) Now navigate back from the DDIC Editor to the Form Interface and further back to 

transaction SFP. Here click on tab strip Context. On this tab strip you can see the form 
interface again. In the tree open the path /SCMTMS/FP_IF_FFDOC → Import → 
IS_PRINTOUT. The fields of the new Append should now be visible here as well. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

262 

262 

 
Picture: Adding the new fields to the Context of the form. 

 
Switch into edit mode (CTRL + F1). Now mark the added extension fields and place them 
into the form context via drag & drop as shown in the picture above. Drag & drop allows 
initial placement of the fields as well as subsequently adjusting their position in the 
hierarchy of the form context. Finally, save and activate the form again. 

 

7.1.4 Providing data to enhanced fields 
Now the new fields added in the print structure need to be provided with data to be printed. 
For this, we first of all need to identify the corresponding print document class which provides 
the data to the form in standard (remember that in this example we have not created our own 
printing class). 
 
1) Start transaction SE24 (Class Builder) and use the F4-Help on the initial screen to search 

for classes with the pattern /SCMTMS/*PRINT*. For our example print form 
/SCMTMS/FP_FFDOC (Forwarding Order) the following class is the right one: 
 
/SCMTMS/CL_PRINTOUT_FWO 

 
2) All print classes provided with SAP Transportation Management inherit from super class 

/SCMTMS/CL_PRINTOUT which provides in general two methods:  
 
- FILL_PRINTSTRUCTURE: This method is overwritten by the implementation of print 

class /SCMTMS/CL_PRINTOUT_FWO. It contains the coding that reads the data to 
be printed at runtime. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

263 

263 

- PRINT_DOCUMENT: Contains coding to prepare the printing of a form and calls 
method FILL_PRINTSTRUCTURE to get the data from the application backend. Its 
implementation is taken over from the mentioned super class. 

 
In printing class /SCMTMS/CL_PRINTOUT_FWO you can find further implemented 
methods that serve as data providers or helper methods for accessing required data. 
 

3) In our example the fields added to the Root node of business object /SCMTMS/TRQ are 
already read within method BUFFER_DATA of class /SCMTMS/CL_PRINTOUT_FWO. 
Here helper class method /SCMTMS/CL_TRQ_HELPER=>READ_NODES returns the 
required data from the corresponding BO instance, i.e. besides other information the 
complete Root node data, including the extension fields.  
 
In other examples this might not be the case. Then you need to add coding in method 
FILL_PRINTSTRUCTURE to read the additional data and map this data to the 
corresponding fields in the print structure. 
 
In our example we just need to add a few lines of code to map the available content of the 
new fields coming from the BO onto the corresponding fields of the print structure. To do 
this, you can e.g. create a post exit for method FILL_PRINTSTRUCTURE. 
 

In any case, review the standard implementation of method FILL_PRINTSTRUCTURE to get 
to know the way how data is read and mapped for the form. In general this is fairly easy 
ABAP coding that can be enhanced accordingly. When writing your own access methods for 
additional data to be provided to the print form, always make sure that this is done in a way 
that ensures a maximum of performance. 
 

7.2 Adjusting the Layout 

7.2.1 Adobe LiveCycle Designer Installation 

The layout of the PDF-based forms is specified and adjusted using the Adobe LiveCycle 
Designer which is required to be installed on your local machine. Review SAP note 1522483 
for instructions how to download this tool from the SAP Service Market Place and how to 
install it. As a customer or partner please make sure in advance that you have sufficient 
authorization to download software from the Service Market Place (SAP internally, you can 
get this authorization via the access enforcer as described in note 1037575). 
 

7.2.2 Placing additional content on the form layout 
As shown in section 7.1 we now have the new extension fields available in the context of the 
form. The fields of the context are now available within the Adobe LiveCycle Designer and 
can be integrated into the layout of the form with the following example steps: 
 
1) In transaction SFP Click on tab strip Layout to display the form definition in the Adobe 

LiveCycle Designer. If installed correctly, you should now see a layout as shown below. 
Make sure that SFP is in edit mode when adjusting the layout. 
 

2) In the Adobe LiveCycle Designer you can now drag & drop the new fields from the data 
view into the layout view and maintain corresponding field properties. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

264 

264 

 

 
Picture: The form in the layout view of the Adobe LiveCycle Manager. 

 
3) Finally save and activate the form again. 

 
With the form adjusted you could now create e.g. a Forwarding Order document with a 
document type that has a corresponding printing configuration assigned. For example you 
could configure a manual Output Management / PPF action that allows displaying the form via 
the print preview in section Output Management of the Forwarding Order UI. Such a 
configuration is described in the example of section 7.4. 
 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

265 

265 

7.3 Creating a new form 
In the following example we will see how to build a print form from scratch, using some of the 
steps and aspects already described in the previous sections. As an example a very simple 
form based on BO /SCMTMS/TRQ (Forwarding Order) is created. The form shall contain 
header and item information of a Forwarding order. In section 7.4 a PPF/Output Management 
example configuration is created that allows displaying the new form in the preview section of 
the output management section of the Forwarding Order UI. 
 

7.3.1 Creating a print structure and table type 

Before the actual form is created we first of all need to create a corresponding print structure, 
a related table type and a form interface. The print structure is the technical DDIC 
representation of the form content. The related table type allows the representation of a list of 
documents based on the corresponding print structure. The form interface contains and 
combines all the technical structures and parameters of the form. 
 
The data source for the new form to be created is again BO /SCMTMS/TRQ (Forwarding 
Order). In this example data from the Root and Item node of the BO will be shown. This 
means that the print structure is allowed to be and will be a deep structure as there can be 
multiple items in a corresponding BO instance. Create the print structure as follows: 
 
1) Start transaction SE11, select radio button Data type and enter the name of the print 

structure in the input field next to it. Example: ZENH_S_PRINT_TRQ. 
 

2) In the menu bar select Dictionary Object → Create… or press F5. 
 
3) Specify fields and tables in the new structure, representing the content of the form (keep 

in mind that the data will come from BO /SCMTMS/TRQ). There are two options to do 
this: 
 

 You define your own list of fields and tables that make up the structure. This will later 
require some coding to map the data of BO node instances onto the corresponding 
parts of the print structure. Or: 

 

 You can reuse the node structures and table types that are used to specify the 
corresponding BO nodes and provide the data for the form. When reading the BO 
data in this format the mapping onto the print structure is very easy to realize (move-
corresponding). In this example we will follow this second approach for simplification 
reasons. 

 
4) Define the print structure by including the combined structure of the TRQ Root node and 

defining a component ITEM that is specified with the combined table type for the TRQ 
Item node (in transaction /BOBF/CONF_UI you can browse the node model and identify 
the used component types). 

 

Structure Description 

ZENH_S_PRINT_TRQ Enh. Demo: Print Structure for a new TRQ Form 

Component Typing 
Method 

Component Type 

.INCLUDE Types /SCMTMS/S_TRQ_ROOT_K 

ITEM Types /SCMTMS/T_TRQ_ITEM_K 

 
This will allow placing all data on the form that is coming from the Root node and the item 
node of a TRQ instance. As the combined structure also will contain extension fields via 
the related extension includes they will be also implicitly available for placing them on the 
form. 

 
5) Save and activate the new structure. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

266 

266 

6) Use transaction SE11 to create table type ZENH_T_PRINT_TRQ with structure 
ZENH_S_PRINT_TRQ as the line type. 
 

7) Save and activate the new table type. 
 

7.3.2 Creating a form interface 

Now we can create the required form interface. The most important information in this 
interface is the assignment of the print structure which represents the data that will be 
available to define the content of the new form. 
 
1) Start transaction SFP, select radio button Interface and in the menu bar select Form 

Object → Create… or press F5.  
 

2) On the next popup screen enter the following data to specify the form interface: 
 

Interface ZENH_FP_IF_TRQ 

Description Demo Enhancement Interface for TRQ 

Interface Type ABAP Dictionary-Based Interface 

 
3) Click button Save (Enter) on the popup screen and specify the package where to place 

the new interface (you can e.g. create the interface as a local object in package $TMP). 
 

4) The form interface will be based on DDIC structure ZENH_S_PRINT_TRQ created in the 
previous step. This is assigned to the form interface as follows:  

 

 Navigate to tab strip Interface. 
 

 In the tree on the right side follow the path ZENH_FP_IF_TRQ → Form Interface → 
Import to define a new Importing Parameter for the form interface. 

 

 Click on button Append Row in the tool bar on the left side and create the following 
entry: 

 

Parameter Name IS_PRINTOUT 

Type assignment TYPE 

Type name ZENH_S_PRINT_TRQ 

 
5) Save and activate the new form interface. 
 
The final print interface should look as shown in the following picture: 

 

 
Picture: The form interface for the new form. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

267 

267 

7.3.3 Creating the Adobe form 

With the new print structure and form interface we finally can create the actual form. This is 
done by using Adobe LiveCycle Designer (see also section 7.2.1 and 7.2.2). Execute the 
following steps to create a simple Adobe Form: 
 
1) Start transaction SFP, select radio button Form and in the menu bar select Form Object 

→ Create… or press F5.  
 

2) On the next popup screen enter the following data to specify the form: 
 

Form ZENH_FP_TRQ 

Description Demo Enhancement Form for TRQ 

Interface ZENH_FP_IF_TRQ 

 

 
Picture: Creating the new form via transaction SFP. 

 
3) Click on button Save (Enter) on the popup screen and specify the package where to 

place the new form (create the form e.g. as a local object in package $TMP). 
 

4) On the next screen go to tab strip Properties. Make sure that the Layout Type is set to 
Standard Layout. 

 
5) Now change to tab strip Context. In the tree on the left side follow the path 

ZENH_FP_IF_TRQ → Import → IS_PRINTOUT. Expand structure IS_PRINTOUT via a 
double click). The context on the right side should be still empty. Only the context root 
ZENH_FP_TRQ should be available. 

 
With this step the mapping between the form interface and the form is defined. Structure 
IS_PRINTOUT represents the set of potential fields on the form while the context 
represents the list of actual fields that will be available when defining the layout of the 
form in the next step. 

 
You can drag & drop attributes of the print structure IS_PRINTOUT on the left side into 
the context of the form on the right side. Click on an attribute on the left side (keep mouse 
button pressed) and then drag it to the context on the left side (drop the very first one 
directly on the root ZENH_FP_TRQ of the context). For the example make the context 
contain the following: 
 

Context attribute Description 

TRQ_ID ID of Forwarding Order/Quotation or Trsp. Reqt 

SRC_LOC_ID Source Location 

DES_LOC_ID Destination Location 

ORDER_PARTY_ID Ordering Party 

SHIPPER_ID Shipper Shipper 

CONSIGNEE_ID Consignee 

GRO_WEI_VAL  Gross Weight 

GRO_WEI_UNI Gross Weight Unit of Measure 

GRO_VOL_VAL Gross Volume 

GRO_VOL_UNI Gross Volume Unit of Measure 

NET_WEI_VAL Net Weight 

NET_WEI_UNI Net Weight Unit of Measure 

CREATED_BY Created By 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

268 

268 

CREATED_ON Created on 

CHANGED_BY Changed By 

CHANGED_ON Changed On 

ITEM Item 

 

 
Picture: Specifying the context of a form. 

 
6) Change to tab strip Layout (make sure that you have installed Adobe LiveCycle Designer 

as described in section 7.2.1). On the left side of the Adobe LiveCycle Designer navigate 
to tab strip Hierarchy. 
 

 Define a master page with sub forms to represent different aspects of the form 
content. In the example form we have created a master page that has two content 
areas, one for the Root data and a second one for the Item data. 

 

 Define a sub form for the Root data and assign it to the Root content area of the main 
page. Then define a sub form for the Item data and assign it to the Items content area 
of the main page 
 

For more details on how to use the Adobe LiveCycle Designer review the corresponding 
help documentation in your system and take a look at the master page and sub form 
definitions of the standard forms provided by SAP to learn more. Moreover you can find 
further information about using Adobe LiveCycle Designer e.g. in the SCN (SAP 
Collaboration Network) or in the Internet in general.  The following picture shows the final 
elements hierarchy of the example form.  
 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

269 

269 

 
Picture: The hierarchy of the example form. 

 
7) On the left side of the Adobe LiveCycle Designer navigate to tab strip Data View. 

 
Here the fields from the defined context are now available to be placed on the form 
layout. You can drag & drop any of the fields from the tree representation of the context 
on the left side Data View into the Design View in the middle section of the screen. 

 

 
Picture: The data view of the example form. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

270 

270 

 Drag & drop Root fields into the Root sub form area, arrange the fields as required 
and maintain field properties (e.g. define fields representing date/time information to 
be formatted accordingly as date/time, etc.). 

 

 Drag & drop Item fields into the Item sub form area, arrange the fields as required 
and maintain field properties e.g. define fields representing date/time information to 
be formatted accordingly as date/time, etc.). 

 

 Add additional required elements on the form like logos (in the picture above you can 
see that e.g. an SAP logo was added on the layout of the form), separators etc. 
 

 The Items subpage displays the data of one or more items of the represented 
Forwarding Order document in this example. In the layout for the item data is defined 
for exactly one item. The item sub form is configured to be repeated for each data 
item of a Forwarding Document instance. 

 
8) Save and activate the new form. 

 

7.3.4 Creating required coding in the backend 

With the previous step the definition of the form, its content and layout is finalized. In the next 
step ABAP coding is required to provide the data of a BO instance to the form and enable the 
communication with PPF and Output Management. For this we need to define a Printing 
Class and a BO Service Class as follows: 
 
Define a Printing Class: 
 
1) Start transaction SE24 and create a new class that represents the Printing Class for the 

new form. This class will contain coding to fill the print structure of the form with data from 
a discrete BO instance. Use the following definitions for the example class: 
 
Create class ZCL_ENH_PRINTOUT_FWO which inherits from the super class 
/SCMTMS/CL_PRINTOUT (the TM Super Class for printing documents). 
 

2) Add the following attributes and constants to the class: 
 

Attribute Level Visibility Typing Associated Type 
MO_SRVMGR Instance 

Attribute 
Protected
  

Type 
Ref To 

/BOBF/IF_TRA_SERVICE_MANAGER 

MT_TRQ_ROOT Static 
Attribute 

Protected Type /SCMTMS/T_TRQ_ROOT_K 

MT_TRQ_ITEM Static 
Attribute 

Protected Type /SCMTMS/T_TRQ_ITEM_K 

MT_STAGE Static 
Attribute 

Protected Type /SCMTMS/T_TRQ_STAGE_K 

MT_DOCREFERENCE Static 
Attribute 

Protected Type /SCMTMS/T_TRQ_DOCREF_K 

MT_PARTY Static 
Attribute 

Protected Type / SCMTMS/T_TRQ_PARTY_K 

MT_PARTY_LINK Static 
Attribute 

Protected
  

Type /BOBF/T_FRW_KEY_LINK 

MT_ITEMCONTENTID Static 
Attribute  

Protected
  

Type /SCMTMS/T_TRQ_CONTENT_IDENT_K 

MT_DG_INFO_ITEM Static 
Attribute 

Protected
  

Type /SCMTMS/T_TRQ_DGO_INFO_K 

MT_ITEMPARTY Static 
Attribute 

Protected Type /SCMTMS/T_TRQ_PARTY_K 

MT_ITEMPARTY_LINK Static 
Attribute 

Protected Type /BOBF/T_FRW_KEY_LINK 

 
3) Redefine class method FILL_PRINTSTRUCTURE. This method will read the data form 

the BO instance to be printed and does the mapping between the BO data structure and 
the print structure. The example coding looks as follows: 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

271 

271 

 
METHOD fill_printstructure. 

 

  FIELD-SYMBOLS: <lt_printout_fwo> TYPE zenh_t_print_trq, 

                 <ls_trq_root>     TYPE /scmtms/s_trq_root_k. 

 

  DATA: ls_printout_fwo      TYPE zenh_s_print_trq, 

        ls_printout_fwo_item TYPE /scmtms/s_trq_item_k, 

        lo_message           TYPE REF TO /bobf/if_frw_message, 

        lr_trq_root          TYPE REF TO /scmtms/s_trq_root_k, 

        lr_trq_item          TYPE REF TO /scmtms/s_trq_item_k. 

 

  CREATE DATA et_printout LIKE <lt_printout_fwo>. 

  ASSIGN et_printout->* TO <lt_printout_fwo>. 

 

* Use a TRQ helper class method to read the relevant TRQ data 

  CALL METHOD /scmtms/cl_trq_helper=>read_nodes 

    EXPORTING 

      it_key               = it_keys 

    IMPORTING 

      et_root              = mt_trq_root 

      et_item              = mt_trq_item 

      et_stage             = mt_stage 

      et_docreference      = mt_docreference 

      et_party             = mt_party 

      et_party_link        = mt_party_link 

      et_itemcontentid     = mt_itemcontentid 

      et_itemdanggoodsinfo = mt_dg_info_item 

      et_itemparty         = mt_itemparty 

      et_itemparty_link    = mt_itemparty_link. 

 

* Fill the print structure with the data of the BO instance 

  LOOP AT mt_trq_root REFERENCE INTO lr_trq_root. 

    "mapping the root node information 

    ls_printout_fwo-trq_id = lr_trq_root>trq_id. 

    "Document Number 

    ls_printout_fwo-tsp_id = lr_trq_root->tsp_id. 

    "Carrier Party 

    ls_printout_fwo-src_loc_id = lr_trq_root->src_loc_id. 

    "Source Location 

    ls_printout_fwo-des_loc_id = lr_trq_root->des_loc_id. 

"Destination Location 

ls_printout_fwo-order_party_id = lr_trq_root->order_party_id. 

"Ordering Party 

ls_printout_fwo-shipper_id = lr_trq_root->shipper_id. 

    "Shipper 

    ls_printout_fwo-consignee_id = lr_trq_root->consignee_id. 

    "Consignee 

    ls_printout_fwo-gro_wei_val = lr_trq_root->gro_wei_val. 

    "Gross Weight 

    ls_printout_fwo-gro_wei_uni = lr_trq_root->gro_wei_uni. 

    "Gross Weight Unit of Measure 

    ls_printout_fwo-gro_vol_val = lr_trq_root->gro_vol_val. 

    "Gross Volume 

    ls_printout_fwo-gro_vol_uni = lr_trq_root->gro_vol_uni. 

    "Gross Volume Unit of Measure 

    ls_printout_fwo-net_wei_val = lr_trq_root->net_wei_val. 

    "Net Weight 

    ls_printout_fwo-net_wei_uni = lr_trq_root->net_wei_uni. 

    "Net Weight Unit of Measure 

    ls_printout_fwo-created_by = lr_trq_root->created_by. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

272 

272 

    "Created By 

    ls_printout_fwo-created_on = lr_trq_root->created_on. 

    "Created on 

    ls_printout_fwo-changed_by = lr_trq_root->changed_by. 

    "Changed By 

    ls_printout_fwo-changed_on = lr_trq_root->changed_on. 

    "Changed On 

 

    "mapping the item information 

    CLEAR ls_printout_fwo-item. 

    LOOP AT mt_trq_item  REFERENCE INTO lr_trq_item 

      WHERE parent_key = lr_trq_root->root_key. 

      CLEAR ls_printout_fwo_item. 

      ls_printout_fwo_item-item_id    = lr_trq_item->item_id. 

      ls_printout_fwo_item-item_cat   = lr_trq_item->item_cat. 

      ls_printout_fwo_item-product_id = lr_trq_item-> 

                                                   product_id. 

 

      INSERT ls_printout_fwo_item  

      INTO TABLE ls_printout_fwo-item. 

    ENDLOOP. 

 

    INSERT ls_printout_fwo INTO TABLE <lt_printout_fwo>. 

  ENDLOOP. 

 

ENDMETHOD. 

 
Define a BO Service Class: 
 
4) Start transaction SE24 and create a new class that represents the BO Service class. This 

class will contain coding to communicate with the PPF and Output Management. For this 
it will also reference and use the Printing Class created in the previous steps (see the 
coding example for BO Service Class method PERSONALIZE_DOC_BY_ABAP in the 
following step 7). Use the following definitions for the example class: 
 
Create class ZCL_ENH_TRQ_PPF_SERVICE which inherits from the super class 
/BOFU/CL_PPF_SERV_FOR_BO (PPF Services for BO). Review section 7.4.1 again 
where the role of this PPF class is mentioned. 
 

5) Add the following attributes and constants to the class: 
 

Attribute Level Visibility Typing Associated Type 
MV_AD_TRQ_FWO_PRINT Instance 

Attribute 
Protected 
 

Type PPFDTT 

MV_AD_TRQ_FWO_PRINT_
MAN 

Instance 
Attribute 

Protected 
 

Type PPFDTT 

GC_AD_TRQ_FWO_PRINT Constant Private 
 

Type PPFDTT 

Initial value: 
ZENH_TRQ_FWO_PRINT 

GC_AD_TRQ_FWO_PRINT_
MAN 

Constant Private 
 

Type PPFDTT 

Initial value: 
ZENH_TRQ_FWO_PRINT_MAN 

 
6) Implement a constructor for the class (the method CONSTRUCTOR is a public instance 

method). The example coding for the constructor looks as follows: 
 

METHOD CONSTRUCTOR. 

* call super constructor 

  CALL METHOD super->constructor. 

 

* configure class with defalut action definitions 

  mv_ad_trq_fwo_print      = gc_ad_trq_fwo_print. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

273 

273 

  mv_ad_trq_fwo_print_man  = gc_ad_trq_fwo_print_man. 

 

ENDMETHOD. 

 
7) Redefine class method PERSONALIZE_DOC_BY_ABAP with the following coding: 

 
METHOD personalize_doc_by_abap. 

 

  DATA: lo_printout        TYPE REF TO  /scmtms/cl_printout, 

        ls_key             TYPE /bobf/s_frw_key, 

        lt_keys            TYPE /bobf/t_frw_key, 

        lv_document_number TYPE /scmtms/trq_id. 

 

* PPF specific variables 

  DATA: lv_db_key    TYPE /bobf/conf_key. 

 

  DATA: lr_message TYPE REF TO /bobf/if_frw_message. 

 

* Start. Via this container, determine the Root Node ID 

  CALL METHOD io_container->get_db_key 

    RECEIVING 

      result = lv_db_key. 

 

 

* Determine BO Name and Node ID from PPF container 

  ls_key-key = lv_db_key. 

  APPEND ls_key TO lt_keys. 

 

  CASE is_ppf_act-ppf_action. 

 

    WHEN mv_ad_trq_fwo_print OR mv_ad_trq_fwo_print_man. 

      " Forwarding Order: create instance of class for document 

      " to be printed. 

      CREATE OBJECT lo_printout TYPE zcl_enh_printout_fwo. 

 

    WHEN OTHERS. 

 

  ENDCASE. 

 

  IF lo_printout IS BOUND. 

*   Fill data and print document. 

    CALL METHOD lo_printout->print_document 

      EXPORTING 

        it_keys            = lt_keys 

        ip_function_name   = ip_function_name 

        ip_form_name       = ip_form_name 

        is_outputparams    = is_outputparams 

      IMPORTING 

        es_formoutput      = es_formoutput 

        es_joboutput       = es_joboutput 

        eo_message         = lr_message 

        ev_document_number = ev_document_number 

      CHANGING 

        cs_docparams       = cs_docparams 

        cp_document_title  = cp_document_title. 

  ENDIF. 

 

  IF ( lr_message IS NOT INITIAL ). 

    CALL METHOD io_message->add 

      EXPORTING 

        io_message = lr_message. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

274 

274 

  ENDIF. 

 

ENDMETHOD. 

 
8) Redefine class method DETERMINE_PRINTER_BY_ABAP with the following coding: 

 
METHOD DETERMINE_PRINTER_BY_ABAP. 

 

* Get the default printer of the actual user. 

* Uses function 'SUSR_GET_USER_DEFAULTS' in order to retrieve 

* printer-related data from table with entries of type USDEF. 

  get_printer_for_logon_user( 

  CHANGING 

    cs_printer =     et_data ). 

 

* A device is needed. Therefore set a default. 

  IF et_data-device IS INITIAL. 

    et_data-device = 'A000'. 

  ENDIF. 

 

ENDMETHOD. 

 
 
9) Redefine class method /BOFU/IF_PPF_SERV_FOR_BO~GET_PROFILES. It will take 

care of determining the correct PPF Action Profile. Use the following example coding: 
 

METHOD /BOFU/IF_PPF_SERV_FOR_BO~GET_PROFILES. 

 

  DATA: lo_trq_srv_mgr TYPE REF TO /bobf/if_tra_service_manager, 

 

        lt_trq_root    TYPE /scmtms/t_trq_root_k, 

        lt_trq_root_bi TYPE /scmtms/t_trq_root_k, 

        lr_s_trq_root  TYPE REF TO /scmtms/s_trq_root_k, 

 

        lt_trq_types   TYPE /scmtms/t_trqty, 

        ls_trq_type    LIKE LINE OF lt_trq_types, 

 

        lt_key         LIKE it_key, 

        lt_key_deleted LIKE it_key_deleted, 

        ls_key         LIKE LINE OF lt_key, 

 

        lt_ppf_profile TYPE /bofu/t_ppf_prof, 

 

        lt_data        LIKE et_data, 

        ls_data        LIKE LINE OF et_data. 

 

* Clear return parameters 

  CLEAR et_data. 

 

* Retrieve TRQ Root. The setting how to determine the relevant 

* PPF Action Profiles is stored at the root node. 

* For created/changed instances we need the current image, for 

* deleted instances we need the before image 

  lo_trq_srv_mgr = /bobf/cl_tra_serv_mgr_factory=> 

            get_service_manager( /scmtms/if_trq_c=>sc_bo_key ). 

 

  lo_trq_srv_mgr->retrieve( 

    EXPORTING 

      iv_node_key             = /scmtms/if_trq_c=>sc_node-root 

      it_key                  = it_key 

    IMPORTING 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

275 

275 

      et_data                 = lt_trq_root ). 

 

  lo_trq_srv_mgr->retrieve( 

    EXPORTING 

      iv_node_key             = /scmtms/if_trq_c=>sc_node-root 

      it_key                  = it_key_deleted 

      iv_before_image         = abap_true 

    IMPORTING 

      et_data                 = lt_trq_root_bi ). 

 

  INSERT LINES OF lt_trq_root_bi INTO TABLE lt_trq_root. 

 

 

* Retrieve all TRQ types. 

  CALL METHOD /scmtms/cl_trq_helper_cust=>get_trqtype_all 

    IMPORTING 

      et_trqtype = lt_trq_types. 

 

* Retrieve PPF Action Profiles of current output agent 

  conf_get_valid_ppf_prof( 

    EXPORTING 

      is_ppf_conf        = is_ppf_conf 

      iv_kind_of_profile = iv_kind_of_profile 

      io_message         = io_message 

    IMPORTING 

      et_data            = lt_ppf_profile ). 

 

* Determine relevant PPF Action Profiles Separate instances were  

* the Output Profile is specified explicitly and were the PPF 

* Action Profiles shall be determined automatically according to 

* the settings in the output management adapter configuration 

 

  LOOP AT lt_trq_root REFERENCE INTO lr_s_trq_root. 

 

    READ TABLE lt_trq_types INTO ls_trq_type 

         WITH TABLE KEY type = lr_s_trq_root->trq_type. 

    IF sy-subrc NE 0. 

      CLEAR ls_trq_type. 

    ENDIF. 

 

    IF ls_trq_type-ppf_profile_auto = abap_true. 

      " PPF Action profiles are to be determined automatically 

      " by output management adapter configuration 

      " Collect key for automatic determination 

      CLEAR ls_key. 

      ls_key-key = lr_s_trq_root->key. 

 

      READ TABLE it_key WITH TABLE KEY key_sort 

        COMPONENTS key = lr_s_trq_root->key 

        TRANSPORTING NO FIELDS. 

      IF sy-subrc = 0. 

        INSERT ls_key INTO TABLE lt_key. 

      ELSE. 

        INSERT ls_key INTO TABLE lt_key_deleted. 

      ENDIF. 

    ELSE. 

      " Relevant PPF Action profile is stored in transportation 

      " request root 

      IF ls_trq_type-ppf_profile IS NOT INITIAL. 

        READ TABLE lt_ppf_profile 

          WITH TABLE KEY ppf_profile = ls_trq_type-ppf_profile 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

276 

276 

          TRANSPORTING NO FIELDS. 

        IF sy-subrc = 0. 

          CLEAR ls_data. 

          ls_data-key         = lr_s_trq_root->key. 

          ls_data-ppf_profile = ls_trq_type-ppf_profile. 

          ls_data-appl_key    = lr_s_trq_root->key. 

          INSERT ls_data INTO TABLE et_data. 

        ENDIF. 

      ENDIF. 

      IF ls_trq_type-ppf_profile_add IS NOT INITIAL. 

        READ TABLE lt_ppf_profile 

          WITH TABLE KEY ppf_profile =  

                         ls_trq_type-ppf_profile_add 

          TRANSPORTING NO FIELDS. 

        IF sy-subrc = 0. 

          CLEAR ls_data. 

          ls_data-key         = lr_s_trq_root->key. 

          ls_data-ppf_profile = ls_trq_type-ppf_profile_add. 

          ls_data-appl_key    = lr_s_trq_root->key. 

          INSERT ls_data INTO TABLE et_data. 

        ENDIF. 

      ENDIF. 

    ENDIF. 

  ENDLOOP. 

 

  " For all instances in LT_KEY, LT_KEY_DELETED, determine the  

  " relevant PPF Action Profile automatically 

  IF lt_key IS NOT INITIAL OR lt_key_deleted IS NOT INITIAL. 

    super->/bofu/if_ppf_serv_for_bo~get_profiles( 

      EXPORTING 

        is_ppf_conf        = is_ppf_conf 

        iv_kind_of_profile = iv_kind_of_profile 

        it_key             = lt_key 

        it_key_deleted     = lt_key_deleted 

        io_message         = io_message 

      IMPORTING 

        et_data            = lt_data ). 

 

    " Merge determined PPF Action Profiles 

    INSERT LINES OF lt_data INTO TABLE et_data. 

  ENDIF. 

 

ENDMETHOD. 

 

7.4 Output Management Adapter and PPF Configuration 
With the new form and the backend coding in place we can now create the required Post 
Processing Framework (PPF) and Output Management Adapter configuration to get the new 
example form displayed in the print preview and printed out on paper. But first we take a 
general look at some of the involved steps and concepts which will help understanding the 
configuration example. 
 

7.4.1 Overview and general concepts 

Output Management enables not only printing but also other output types like fax and email 
and it is also used in the context of alerting for business events, workflow items, A2A and B2B 
communication, BI Data Uploading or triggering events to SAP Event Management Systems. 
 
The Output Management Adapter is a component which was developed in the Business Suite 
Foundation layer (SAP_BS_FND) and enables output functionality for a given BO node of a 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

277 

277 

BOPF-implemented Business Object (e.g. /SCMTMS/TRQ which can e.g. represent a 
Forwarding Order). It enables the Post Processing Framework (PPF) to connect with 
individual BO nodes and the BO node-specific assignment of PPF Action Profiles. 
 

 
Picture: The relation between BOPF BO nodes and PPF. 

 
PPF enables the generic execution of functions and processes and provides a unified 
interface to corresponding actions. Actions can be considered as business tasks. They can 
trigger e.g. conventional output like print, fax or email but generally speaking it can trigger any 
method call (e.g. sending A2A or B2B messages).  
 
Available actions are configured and collected in so called Action Profiles. Such actions can 
then executed manually, e.g. via the User Interface of a Business Object (in the later example 
we’ll see an action that can be executed manually to print the example form of section 7.3 
from the Forwarding Order UI). 
 
The execution of an action can also be made dependent on the content of a business 
document and executed automatically in the backend. Moreover you can define conditions 
(schedule and start conditions) that determine why and when an action is executed. Such 
conditions can take into consideration e.g. the content of a business document to be printed. 
 

 
Picture: PPF Actions and their condition based execution. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

278 

278 

 
The application layer (e.g. SAP TM) uses the Output Management Adapter for communication 
with the PPF to execute outputs. For this execution PPF must be provided with the 
application-specific data that can be passed to PPF via a number of BAdIs which have to be 
implemented by the consuming application. 
 
All relevant PPF-Exits on Action-Level are permanently connected to the corresponding 
methods of the Agent Class (BO Service Class  see section 7.3.4) that can be specified in 
Output Management customizing (see section 7.4.4). The implementation of such an Agent 
Class always follows the same interface, i.e. each such class implementation inherits from 
standard super class /BOFU/CL_PPF_SERV_FOR_BO which defines the common structure 
for accessing PPF functionality from an application. This allows a unified and easy 
implementation of any Agent Class to be used by the application. 
 
The application specific Agent Class implementation redefines the corresponding methods 
and maybe adds additional ones for its individual functionality (e.g. additional helper methods 
are added to further structure the implementation). The logic can be implemented of course in 
plain ABAP or by using BRF+-Conditions. When you take a look at the mentioned super class 
you will find a number of “method pairs”, i.e. one with the postfix _BY_ABAP (for ABAP based 
logic) and the same method with postfix _BY_FDT (for BRF+-based logic  FDT is the old 
name of BRF+ and stands for Formula and Derivation Tool). Some more detailed aspects of 
the Agent Class: 
 
Action Profile Determination 
 
You can assign multiple Action Profiles to a BO node in the Output Management Adapter 
customizing and also in the application layer. But at runtime PPF must be provided with the 
final Action Profile to be used. A Forwarding Order with Transportation Mode Road may 
require a different Action Profile than a Forwarding Order with Transportation Mode Air or 
Ocean. 
 
The Agent Class method GET_PROFILES can be redefined and implemented with coding 
that determines the correct and relevant Action Profile depending e.g. on the information of 
the business document for which available actions shall be determined. The resulting Action 
Profile is then provided to PPF for further processing. 
 
Printer Determination 
 
Output Management provides alternative ways of how to determine a printer for external 
communication outputs. The printer determination follows a sequence: 
 
1. The printer is determined via the implementation of the Printer Determination BAdI 

PRINTER_DETERM_PPF. This is simply done by redefining the Agent Class method 
DETETMINE_PRINTER_BY_ABAP (or _BY_FDT). 
 

2. You can place a static printer configuration in the Processing Details of the conditions 
configuration for a PPF Action. 

 
3. Define a printer in your User Profile settings (in the example implementation of Agent 

Class method DETERMINE_PRINTER_BY_ABAP you can actually see how the printer 
specified in the User Profile settings can be read (see step 8 of section 7.3.4). 

 
Partner and Language Determination 
 
Actions might be partner-dependent. In the Action Definition you can mark the action to be 
partner-dependent and specify a partner role. To compare this assigned role with a role 
specified in the business document to be processed you can redefine and implement Agent 
Class method GET_DOCUMENT_PARTNERS.  
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

279 

279 

In case you need to execute an action for external communication in a language different to 
the default language you can redefine and implement the Agent Class methods 
GET_LANGUAGE_FOR_EXT_COMM or GET_LANGU_4_EXT_COMM_BY_ABAP (the latter 
one actually calls the last one by default). 
 
Generating and executing Actions 
 
PPF outputs are executed in two steps. First the relevant actions are generated. The 
application can make use of the already mentioned scheduling conditions to determine which 
actions are allowed to be triggered in the context of a business scenario. If the schedule 
condition of an action is fulfilled, it is scheduled for (manual or automatic) execution. In the 
second step a generated action is executed in case the configured start condition is fulfilled 
(see section 7.4.3 for some more details). 

 

7.4.2 Creating a PPF Action Profile and Action Definitions 

In section 7.3 we defined and implemented a new print form for printing data of Forwarding 
Orders (BO /SCMTMS/TRQ). The following configuration example will create all required 
settings for PPF and the Output Management Adapter that will allow displaying the new print 
form in a preview within the Forwarding User Interface and print it from there. For this purpose 
we will configure a PPF action that can be triggered manually. 
 
Each application that makes use of PPF is registered in the PPF customizing. SAP TM is 
registered there under the application name /SCMTMS/TRANSPORTATION. This application 
entry serves as a container for all PPF settings that will be done in the context of SAP TM. 
 
1) Start transaction SPPFCADM or start customizing transaction SPRO and follow the path 

Cross-Application Components → Processes and Tools for Enterprise Applications → 
Reusable Objects and Functions for BOPF Environment → PPF Adapter for Output 
Management → Maintain PPF Settings. 
 

2) On the first screen select application /SCMTMS/TRANSPORTATION and then click on 
button Define Action Profile and Actions. 
 

 
Picture: Maintaining PPF Settings - Initial screen. 

 
3) On the next screen switch into change mode (Crtl+F1). Mark entry Action Profile in the 

Dialog Structure tree and click on button New Entry to create a new Action Profile with the 
following data: 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

280 

280 

 

Field Value 

Action Profile ZENH_TRQ_FWO_PRINT 

Description Enhancement Action Profile for TRQ 

Category of Object Type Persistent Class 

Object Type Name  /BOFU/CL_PPF_CONTAINER 

Context Class /BOFU/CL_PPF_CONTEXT 

 
This new Action Profile will now be used to define actions for printing the example form.  

 
4) Mark entry Action Definition in the Dialog Structure tree and click on button New Entry to 

create a new Action Definition ZENH_TRQ_FWO_PRINT_MAN with the following data: 
 

Tab strip Field Value 

 Action Definition ZENH_TRQ_FWO_PRINT_MAN 

Description Enhancement TRQ Manual Print Action 

Action 
Definition 

Action Settings 

 Processing Time Processing using selection report 

Processing Times Not 
Permitted 

No Restrictions 

Schedule Automatically X 

Changeable in Dialog X 

Delete After Processing [blank] 

Executable in Dialog X 

Action Determination and Action Merging 

Determination Technology Determination Using Conditions that Can Be 
Transported 

Rule Type Conditions Using Business Add In (BAdI) 

Action Merging Set Highest Number of Processed Actions 

Action 
Description 

 

 Description Enhancement TRQ Manual Print Action 

Action Merging Number of Unprocessed Actions 

 One Unprocessed Action for 
each Action Definition 

X 

Number of Processed Actions 

Allow Any Number of 
Actions 

X 

   

 
An Action Definition represents the Meta Data of a business task (e.g. printing out a form 
or sending a service message). A few remarks on the semantics of the different 
properties defined for such an Action Definition. The properties allow quite some 
variations in defining the way how an action will behave at runtime. 
 

 Processing time: An action can be configured for immediate processing, when the 
related business document is posted or later using a selection report (which will then 
process the action). 
 

 Processing times that are not permitted: This property allows excluding processing 
times that make no sense for the action. You may want to print a Forwarding Order 
e.g. only after it has been saved in a consistent status and not immediately while e.g. 
editing it. So you could exclude processing time option “immediate processing” here. 

 

 Schedule automatically: With the flag set, the action is scheduled automatically if the 
schedule condition is fulfilled. Otherwise the action appears in the work list and can 
be scheduled manually by the user. 

 

 Sort order for display: Allows defining a displaying sequence of actions in an action 
profile (e.g. when actions will be manually executed via the User Interface this can 
define the display sequence of actions). 

 

 Delete after processing: The action is executed and then deleted. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

281 

281 

 

 Changeable in dialog: Determines whether after automatic determination you are 
allowed to make changes and repeat the action definition manually. 

 

 Executable in dialog: The action can be executed during document editing, even if a 
posting took not yet place at that point in time. 

 

 Partner-dependent: If set, a partner determination is performed. Actions can be 
assigned to a specific group of partners or persons. 
 

 Partner Function: Specifies the default function for a partner determination. 
 

 Action Determination an Action Merging: During Action Determination PPF checks 
the Schedule Condition of all configured Action Definitions. Action Merging is also 
done during Action Determination. You can e.g. define with option “1 successful 
action per action definition” that each action will not be executed again after the first 
successful execution. 

 
To create Action Definition ZENH_TRQ_FWO_PRINT again click on button New Entry 
and enter the following data: 
 

Tab strip Field Value 

 Action Definition ZENH_TRQ_FWO_PRINT 

Description Enhancement TRQ Print Action 

Action 
Definition 

Action Settings 

 Processing Time Processing when saving document 

Processing Times Not 
Permitted 

No Restrictions 

Schedule Automatically X 

Changeable in Dialog X 

Delete After Processing [blank] 

Executable in Dialog X 

Action Determination and Action Merging 

Determination Technology Determination Using Conditions that Can Be 
Transported 

Rule Type Conditions Using Business Add In (BAdI) 

Action Merging Set Highest Number of Processed Actions 

Action 
Description 

 

 Description Enhancement TRQ Print Action. 
Action Merging Number of Unprocessed Actions 

 One Unprocessed Action for 
each Action Definition 

X 

Number of Processed Actions 

Allow Any Number of 
Actions 

X 

   

 
5) Double click on entry Action Definition in the Dialog Structure tree. You should now see 

the two Action Definitions displayed in a list. For both Action Definitions execute the 
following steps. 
 

6) Mark an Action Definition in the list and double click on entry Processing Type in the 
Dialog Structure tree. Then click on button New Entry to define the Processing Type for 
the selected Action Definition with the following data: 
 
In the list Permitted Processing Types of Action use the F4-Help in column Assignment / 
Change Using Value Help in List and select value External Communication. 
 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

282 

282 

7) You can now see three tab strips which allow specifying further details for the Processing 
Type. On tab strip Document enter the following data: 

 

Field Value 

Form Name ZENH_FP_TRQ 

Form Type PDF-Based Forms 

Format /BOFU/PPF_STANDARD 

Personalization Type Recipient-Specific Variable Replacement 

 
The Processing Type defines the technical realization of an Action Definition. With the 
example settings above you define an External Communication that enables the printing 
of the specified PDF-Based form (see following picture). 
 

 
Picture: Settings for External Communication. 

 

 
Picture: Detail settings for Method Call. 

 
Besides the option External Communication there are further options available like e.g. 
Method Call for invoking a method containing the action’s functionality. As you can see in 
the example screen above /SCMTMS/TEND_TPNORD_QUO_CRTR (Creating Tendering 
Request B2B) is chosen. This actually represents an available filter value for BAdI 
EXEC_METHODCALL_PPF which provides a method Execute that you can implement. 
The corresponding coding is called when executing the related action. 

 
8) Double click on entry Action Definition in the Dialog Structure tree again to return to the 

list of Action Definitions and repeat steps 6 and 7 for the second Action Definition. 
 

9) In the list of Action Definitions mark Action Definition ZENH_TRQ_FWO_PRINT as 
inactive (will not be used for the time being but maybe in a future example). 
 

10) Save your settings. The Action Profile and assigned actions are now configured to be 
used in the next configuration steps. 

 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

283 

283 

7.4.3 Creating PPF Conditions 

In the next steps we create the required condition configuration. The example condition 
configuration is done with the following steps: 

 
1) On the first screen select application /SCMTMS/TRANSPORTATION and then click on 

button Condition Configuration (Transportable Conditions). 
 

 
Picture: Maintaining PPF Settings - Initial screen. 

 
2) On the next screen double click on entry Enhancement Action Profile for TRQ (which 

represents the action profile that was created before) in the list on the left side. Then 
switch to change mode (Ctrt+F1). 
 

 
Picture: Navigating to the Condition Configuration of an Action Profile. 

 
  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

284 

284 

3) On the right side of the screen you can first of all see an empty action list. Click on button 
Create in the toolbar of this list. In the popup menu you can find all the Action Definitions 
that belong to the selected Action Profile. Select the listed action definitions from the 
popup menu one after another to add all of them to the list. 
 

 
Picture: Taking over Action Definitions for Condition Configuration. 

 
For both action definitions execute the following steps to configure the related Condition 
settings. 

 
4) Double click on an Action Definition in the list on the right side. Navigate to tab strip 

Schedule Condition below the list. Make sure that you are in edit mode when creating the 
following condition settings. Use the F4-Help of field Schedule Condition to select the 
value /BOFU/EVAL_SCHEDULE_CONDITION. 
 

 
Picture: Defining the Schedule Condition for an action. 

 
The Schedule Conditions decide whether actions should be scheduled for processing. An 
action is therefore only generated if the schedule condition is met. This is checked during 
Action Determination. In our example a standard default Schedule Condition is used. You 
could also create your own schedule condition here with your own logic. 
 
The value entered in field Schedule Condition on the mentioned screen actually 
represents a filter value for BAdI EVAL_SCHEDCOND_PPF. This BAdI provides a method 

EVALUATE_SCHEDULE_CONDITION that can then be implemented in a filter-specific class. 
The method interface provides all required data (e.g. the content of a business document) that 
allows realizing the corresponding condition logic. 
 
At runtime the method implementation will check whether the schedule condition is fulfilled. 
The data that this decision is based on is provided with importing parameter IO_CONTEXT 
(which can e.g. contain the document data in the print form example). Via exporting parameter 
EP_RC the method returns the check result (where value 0 indicates “condition fulfilled” and a 
value <> 0 indicates “condition not fulfilled”). 
 

5) Now navigate to tab strip Start Condition (the screen looks almost the same as shown for 
the Schedule Condition above). Use the F4-Help of field Start Condition to select the 
value /BOFU/EVAL_START_CONDITION. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

285 

285 

 
The start condition is checked before the action is executed. The action is only executed 
when the start condition has been fulfilled. As for the schedule condition, we use a 
standard default start condition for the example. You could also create your own start 
condition here with your own logic. 
 
The value entered in field Start Condition on the mentioned screen actually represents a 
filter value for BAdI EVAL_STARTCOND_PPF. This BAdI provides a method 

EVALUATE_START_CONDITION that can then be implemented in a filter-specific class. The 
method interface provides all required data (e.g. the content of a business document) that 
allows realizing the corresponding condition logic. 
 
Just like mentioned for the schedule condition, the start condition check method has an 
importing parameter IO_CONTEXT and a corresponding exporting parameter EP_RC that 
returns the check result (where value 0 indicates “condition fulfilled” and a value <> 0 indicates 
“condition not fulfilled”). 
 

6) Save your settings. The condition configuration is now complete and ready to be used in 
the next steps. 

 
Remark: As you can see in this example the PPF Conditions are primarily based on BAdIs 
that you can implement to realize the check logic of a condition. This logic can take into 
account e.g. document data like in the print form example. Depending on the value of a 
document attribute the condition is fulfilled and the related action is scheduled or started. So 
the condition technology provided with the BRF+-Framework is not directly involved. Of 
course you can make use of BRF+-Conditions within the BAdI method implementations. An 
example how to integrate BRF+ into your own implementations is described in section 4.3.7. 

7.4.4 Maintaining Output Management Adapter Settings 

In this step the output management adapter settings are done. These settings determine the 
output for a given Business Object (BO) node. Remember the example Printing Class and the 
BO Service Class that was created in section 7.3.4. The latter includes the usage of the first 
one and will now be used in the Output Management Adapter Settings to connect the BO 
(which provides the relevant document data) with the corresponding PPF configuration and 
settings that were created in the previous sections. 
 
To finalize the example configuration execute the following steps. 
 
1) Start customizing transaction SPRO and follow the path Cross-Application Components 

→ Processes and Tools for Enterprise Applications → Reusable Objects and Functions 
for BOPF Environment → PPF Adapter for Output Management → Maintain Output 
Management Adapter Settings. 

 
2) On the first screen double click on entry PPF Output Agents for BO Nodes in the Dialog 

Structure tree and then click on button New Entries. Enter the following data: 
 

Field Value 

Business Object /SCMTMS/TRQ 

Node ROOT 

Output Agent ZENH_TRQ_STANDARD 

Agent Class for Node ZCL_ENH_TRQ_PPF_SERVICE 

Enable X 

 
With this entry you specify a PPF Output Agent that identifies the required combination or 
connection of a BO node and a PPF Action Profile (whose actions are provided with the 
BO data and will make of it during execution). 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

286 

286 

 
Picture: Setting up a new Output Agent. 

 
3) With the next step assign the Action Profile (created in section 7.4.2) to the PPF Output 

Agent created in the previous step. In the Dialog Structure tree double click on entry 
Assign PPF Profiles and enter the following data: 
 

Field Value 

Action Profile ZENH_TRQ_FWO_PRINT 

Enable X 

Output Type Has Uncritical o/p: Process after Commit (background) 

Preprocess Actions [space] 

Application for Action 
Profile 

 

 

 
Picture: Assign an Action Profile to the Output Agent. 

 
4) Save your settings. 
 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

287 

287 

7.4.5 Preparing an example print document 

With the following steps you finally prepare an example document (in this example a 
Forwarding Order) for which you can display the developed PDF-based form in the print 
preview of the Forwarding Order User Interface. Moreover you can print the example 
document from there by executing the now available action. 
 
If you want to print the form you should make sure that you have maintained a corresponding 
output device for your user. When reviewing method DETERMINE_PRINTER_BY_ABAP of 
the BO Service Class (Agent Class) in section 7.3.4 you can see that the implementation calls 
a method to determine a printer that is maintained in your user settings and if not just returns 
with a default output device. 
 
Open the menu path System → User Profile → Own Data and navigate to the tab strip 
Defaults. In section Spool Control, enter the output device name (i.e. a printer name) in field 
Output Device by selecting an existing one via the F4-Help. Also set the flag Output 
Immediately. 
 
Remember that the example print form is based on the BO /SCMTMS/TRQ that provides its 
Root node and Item node data as the content for the form (the header and item data of a 
Forwarding Order). For testing the example form proceed as follows: 
 
1) Start customizing transaction SPRO and follow the path SAP Transportation 

Management → Forwarding Order Management → Forwarding Order → Define 
Forwarding Order Types. 
 
Switch into change mode (Ctrl+F4) Create a new Forwarding Order Type (click on button 
New Entries) or choose an existing one from the list (which you are allowed to use and 
change). 

 
2) In section Process Control / Business Object Mode on the main screen enter the output 

(action) profile ZENH_TRQ_FWO_PRINT that was created in section 7.4.1, step 3. Here 
the term output profile is used to nevertheless refer to a PPF Action Profile. 
 
Any Forwarding Order that you create now with this type will now make use of this output 
profile with its settings and the example form. 
 

 
Picture: Specifying the Output Profile in the Forwarding Order Type. 

 
 

3) Maintain all other mandatory or required settings and save the Forwarding Order Type 
settings. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

288 

288 

 
4) Create a new Forwarding Order with the corresponding Forwarding Order Type. 

 
You can do this via the TM UI in the NetWeaver Business Client (NWBC) or the 
standalone UI triggered via the user menu path User Menu for [user] → Forwarding Order 
Management → Forwarding Order → Create Forwarding Order. 
 
Provide all mandatory fields on tab strip General Data. Define the required business 
partners on tab strip Business Partner and maintain the required location information on 
tab strip Location and Dates / Times. Moreover, maintain item data in the item list of your 
example document (e.g. an item hierarchy of Container, Package and Product). 
 

5) Save the new document and switch into edit mode again. 
 

6) On the Forwarding Order UI go to tab strip Output Management. First of all you can now 
see an empty Action List. Open the dropdown menu of button Generate and choose option 
Actions Including Condition Checks. 
 

 
Picture: Generating available actions. 

 
This triggers the Action Determination and generation, taking into consideration the 
configured conditions for the actions of the related Action Profile. All actions fulfilling the 
schedule condition are now displayed in the Action List. In the example you should now 
see only action Demo Enh. TRQ Manual Print that we had configured to be active. It is 
shown as an unprocessed action. 
 

 
Picture: The generated action. 

 
7) Now select the generated action in the list. Below the list you can now see further tab 

strips with the details of the generated action. 
 

 
Picture: Selecting an Action, specifying a printer manually and displaying details. 

 
In the selected line with the action you can enter properties for its execution manually, 
e.g. the output device – in this case a printer – in column Printer (when the action is 
executed, the Printer Determination implemented in the Output Agent Class might 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

289 

289 

overrule this input again). In the F4-Help of field Printer you can find available printers 
that can be used. 
 
On tab strip Communication Details you can specify e.g. details for email and fax 
communication. You can specify here e.g. a subject for the email as well as a list of 
recipients and attachments that shall be sent along with the business document. 
 

 
Picture: Communication Details. 

 
On tab strip Action Details you can see details of the action settings, its administration 
(e.g. when it was changed the last time and by whom) as well as details about the 
processing settings. The details shown here represent the settings that were described in 
sections 7.4.2 and 7.4.3. 
 

 
Picture: Action Details. 

 
  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

290 

290 

8) Click on tab strip Document Preview to finally show the example PDF-based document 
with the data of the Forwarding Oder as a preview. 
 

 
Picture: The example PDF-based print form in the document preview. 

 
9) In the tool bar of tab strip Outputs click on selection button Execute and then choose 

option Execute. With this, the form will finally be send to the specified printing device. 
 

 
Picture: Manually executing the action. 

 

 
Picture: Messages in the message bar after successful execution. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

291 

291 

10) In the list of actions you should now see your action in status Successfully Processed 
(also indicated by a green light). Moreover, there is a new tab strip Message Log 
displayed below the action list. Here you can see the list of messages generated during 
the execution of the action. 
 

 
Picture: The successfully executed action in the action list 

 

 
Picture: The message log for an executed action. 

 
 

 
 
 
 
 

 
 
  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

292 

292 

8 Enhancing Services 
SAP TM uses Enterprise Services for business process integration and the integration with 
the outside world. This comprises A2A Services for the integration with other components and 
applications within an enterprise as well as B2B Services for the communication across 
enterprise boundaries. The standard A2A and B2B Services provided with TM are designed 
and implemented for the most common standard use cases, i.e. they represent the core 
content of related business objects. 
 
Enhancements of Enterprise Services are required in case customers or partners have 
enhanced the standard TM business functionality or applications integrated with TM and want 
to provide these enhancements in existing services as well. 
 
The following sections describe the steps required for creating such service enhancements, 
focusing on the procedure recommended by SAP for customers and partners, i.e. enhancing 
the standard service in a new enhancement name space. 
 
In this approach, customers and partners define their enhancement elements in their own 
name spaces. These enhancements nevertheless refer to the SAP standard service. 
 

 Every SAP Enterprise Service can be enhanced. 

 Customers can communicate additional fields to the Business Partner according to their 
own business logic. 

 The Enhancement Concept is modification free. 

 The Enhancement structure and the backend implementation do not change by an 
upgrade, if the Enterprise Service does not change or changes in a compatible way. 

 For a new version of the Enterprise Service a new enhancement should be developed. 
 

8.1 General remarks on Service Enhancements 
 
The first step is choosing the right part of the structure of the Enterprise Service to be 
enhanced. A service message typically contains a message header, a business document 
and (optionally) an attachment. The business document contains one or more nodes that 
again contain elements, i.e. further nodes and/or attributes (message node hierarchy). It 
represents the actual business related content of the message. 
 

 
Picture: General structure of a message. 

 
There are two options to enhance a message as shown in the next picture. The first one is to 
enhance the message data type. You can add an enhancement data type to the message 
data type that contains all your enhancement elements.  
 
The second one is to enhance the Business Document structure of the message. It is the 
recommended approach to be used. This allows you adding your enhancement elements to a 
section of the Business Document data type that it semantically belongs to. For example 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

293 

293 

adding an additional party to a message should be done on an already existing party node in 
the business document structure, i.e. you add your enhancement data type to the 
corresponding node data type. In case your enhancement is semantically not represented in 
the existing nodes, you can of course create your own enhancement node within the 
Business Document structure. 
 

 
Picture: Two options for a service enhancement. 

 
Similar to modeling a BOPF BO, there should be as few nodes as possible and as much as 
necessary and it should be checked whether the enhancement information can be an attribute 
of an existing node rather than introducing a new node. 
 
Each message is represented by a message data type that consists of subcomponents (a 
hierarchy of nodes and attributes) that are again represented by corresponding data types. 
These data types are modeled in the Enterprise Service Repository (ESR). In general any of 
these data types can be enhanced as long as they have an explicit ESR data type 
representation.  
 
It is recommended to only enhance data types that are uniquely used in a single message as 
otherwise your enhancement will also be included in other messages that reuse the same 
data type. In case this is not possible the BAdIs for all affected messages should be 
implemented to make sure that all services handle your enhancement in a consistent and 
common way. In ESR you can create a “where-used” list of the data type to be enhanced to 
identify all affected places where the data type to be enhanced is reused. 
 

8.1.1 Example Service Enhancement 
As an example for a service enhancement we take a look at the Sales Order Integration 
scenario between ERP and TM. In this scenario, a sales order is send from an ERP system to 
a connected TM system where it will be transferred into a corresponding transportation 
request. Let’s assume there are already customer/partner specific fields added to the sales 
order on ERP side that now shall also be taken into consideration in the processing of the 
related transportation request on TM side. 
 
In the example, we will add a new attribute to the corresponding message that will allow 
transferring a Route ID from an ERP Sales Order to TM that shall be used for further 
processing of the resulting transportation request. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

294 

294 

 
Picture: Schema of the example integration scenario. 

 
On the sending side, the service operation (or action) Send Sales Order to Transportation 
Management System of Outbound Interface ODP_TransportationRequestSUITERequest_Out 
takes the data of a Sales Order created in ERP and puts this data into the related Output 
Message of type TransportationRequestSUITERequest. 
 
On the receiving side, the service operation (or action) Import Order from SAP ERP of 
Inbound Interface IntracompanyTransportationRequestRequest_In receives the message and 
takes its data into the related Input Message of type TransportationRequestSUITERequest. 
 

 
Picture: The message type representation in ESR. 

 
In the picture above you can see the message type relevant for the example displayed in the 
Enterprise Service Repository. The example enhancement attribute Route will be added as 
an additional direct sub element of the business document node TransportationRequest. The 
data type that specifies this node is TranspReqSUITEReqTranspReq which represents the 
header level of the business document. Placing the new attribute as a direct sub component 
of this level would fit from a business perspective, i.e. this fits semantically. 
 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

295 

295 

8.1.2 Basic steps to enhance an Enterprise Service 

In general it takes the following steps in three different areas to create an enhancement for an 
Enterprise Service. They will be described in more detail in the next sections: 
 
Development in System Landscape Directory (SLD): 
 

 Create a Product and Software Component. 

 Define Dependencies between an EnSWCV and an underlying SWCV. 
 
Development in Enterprise Service Repository (ESR): 
 

 Import an EnSWCV into ESR. 

 Create a Namespace in EnSWCV. 

 Create an Enhancement Data Type in the SWC. 

 Create an Enhancement Data Type for TM in the SWC. 

 Create an Enhancement Data Type for ERP (ECC) in the SWC. 
 
Development in the Backend Systems: 
 

 Generate the Enhancement Proxy Structure on the ERP (ECC) side and enhance the 
Outbound Program with the help of a BAdI implementation. 

 Generate the Enhancement Proxy Structure on TM side and enhance the Inbound 
Program with the help of a BAdI implementation. 

 
In the PI System that is connected to your ERP- and TM system to integrate them both, use 
transaction SXMB_IFR to access the System Landscape Dictionary (SLD) and the Enterprise 
Service Repository (ESR). For the steps to be done in the backend systems we will use 
transaction SPROXY and the various transactions for implementing BAdIs. 
 

8.2 Development in System Landscape Directory (SLD) 
A service enhancement done by a customer or partner is always assigned to and defined in a 
non-SAP Product Version along with a corresponding Enhancement Software Component 
Version (EnSWCV). This will not only allow keeping the standard service definition separated 
from any enhancement definition but also separating different enhancements done by e.g. 
different implementation partners. 

8.2.1 Creating a Product Version and Software Component 

In this first step we create a non-SAP Product Version and an Enhancement Software 
Component Version that will contain the target service enhancements of the example. 
 
1) In your PI System start transaction SXMB_IFR. On the initial screen in the browser click 

on the System Landscape Directory link and then logon with your PI System User (which 
should have all required authorizations assigned to execute all following steps). 
 

 
Picture: The start screen of SXMB_IFR in the browser 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

296 

296 

 
2) On the next screen you can see in section Software Catalog a link to the products 

available in this system. Click on the link Products. 
 

 
Picture: Software Catalog with link to Products. 

 
Click on button New to start creating a new Product / Product Version. 
 

 
Picture: Create a new product version. 

 
On the next screen you get to the first step of the guided procedure that will help you 
entering and defining all required information for the new Product Version and the 
Enhancement Software Component Version (EnSWCV). In step 1 (Action Type) choose 
option Create a new product and version and click on button Next to get to step 2. 
 

 
Picture: Create a new Product Version (step 1). 

 
In step 2 (Product) enter the following data to define your new product and click on button 
Next to get to step 3. 
 

Field Value Comment 

Product Name ZENH_HP_TM_Product The name of the non-SAP product. 

Product Vendor www.zenhhptm.com An identifier of the product vendor 
(usually a URL/Link like this). 

Product Version 9.3 The Product Version (here 9.3 was 
chosen as also the example SAP TM 
system was on version 9.3) 

 
 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

297 

297 

 
Picture: Create a new Product Version (step 2). 

 
In step 3 (Product Instance) enter PIZENHHPTMCOMPONENT as (example) Instance 
Name and click on button Next to get to step 4. 
 

 
Picture: Create a new product version (step 3). 

 
In step 4 (Create Software Component and Version) make sure that the following data is 
entered in the mandatory fields. In this step the required EnSWCV is defined.  
 

Field Value Comment 

Vendor www.zenhhptm.com Vendor Name (see step 2) 

Name PIZENHHPTMCOMPONENT Name for our EnSWCV. 

Version 9.3 The version number. 

Production State released Set to value released to allow 
immediate import into ESR. 

 

 
Picture: Create a new product version (step 4). 

 
Click on button Finish to finally create the (released) Product Version and EnSWCV. The 
production state was set to value released. This allows an immediate import of this new 
EnSWCV into the ESR after it has been created here in the System Landscape Directory. 
Finally you should see the following success message. 
 

 
Picture: Message on successful creation of the Product Version. 

 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

298 

298 

8.2.2 Defining dependencies between EnSWCV and SWCVs 

The enhancements that are defined in the new example EnSWCV created in the previous 
section are always done based on a certain version of the underlying standard application 
and the Software Component Versions (SWCVs) that it is built on. So for the EnSWCV we 
also need to define the prerequisite SWCVs that it relies or is based on. Defining these 
dependencies is done with the following steps. 
 
1) On the initial screen of the System Landscape Directory (SLD) you can see in section 

Software Catalog a link to the software components available in this system. Click on the 
link Software Components. 
 

 
Picture: Software Catalog with link to Software Components. 

 
2) On the first screen search for the new EnSWCV PIZENHHPTMCOMPONENT by entering 

a corresponding filer value in the filter field of the Software Component list (see picture 
below). 
 

 
Picture: Searching for the new EnSWCV. 

 
In the lower section of the same screen you can then see several tab strips that show the 
detailed settings and properties of the new EnSWCV. On tab strip Dependencies you can 
now define the prerequisite Software Component Versions that our EnSWCV shall rely or 
be based on. Click on button Define Prerequisite Software Component Versions. 
 

 
Picture: Define prerequisite Software Component Versions. 

 
  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

299 

299 

On the following screen enter the filter value SAPTM in the filter field of column Software 
Component as shown in the picture below and press Enter. Then select the SAP TM 
Version that your EnSWCV shall be based on. In the example this is SAPTM 1.40 (SAP 
TM Release 9.3). Select the corresponding entry in the result list and finally click on 
button Define as Prerequisite Software Components. 
 

 
Picture: Defining the prerequisite SAP TM Software Component. 

 
With this step, you have defined that the example enhancements are based on Software 
Component Version SAPTM 1.40 (SAP TM Release 9.3). As we enhance a service to 
integrate a SAP TM system with an SAP ERP (ECC) system, we also need to define the 
corresponding ECC Software Component Version which is prerequisite for the example 
enhancements. This is done with the same steps as for the SAP TM Software 
Component. 
 
On tab strip Dependencies press again on button Define Prerequisite Software 
Component Versions. On the following screen enter the filter value ECC in the filter field 
of column Software Component as shown in the picture below and press Enter. Then 
select the ECC Version that your EnSWCV shall be based on. In the example this is ESA 
ECC-SE 605. Select the corresponding entry in the result list and finally click on button 
Define as Prerequisite Software Components. 
 

 
Picture: Defining the prerequisite ECC Software Component. 

 
The final list of prerequisite Software Component Versions should now look as follows: 
 

 
Picture: Prerequisite Software Component Versions. 

 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

300 

300 

8.3 Development in Enterprise Service Repository (ESR) 
The additional service message content and the enhancement of the service message type 
by this new content is done in the ESR. The corresponding objects and definitions are 
assigned to the Product Version and EnSWCV created in the previous steps. 

8.3.1 Importing the EnSWCV into ESR 
So as a first step, the Enhancement Software Component Version needs to be imported from 
the System Landscape Directory into the Enterprise Service Repository. 
 
1) In your PI System start transaction SXMB_IFR. On the initial screen in the browser click 

on the Enterprise Services Builder link and then logon with your PI System User (which 
should have all required authorizations assigned to execute all following steps). 
 

 
Picture: The start screen of SXMB_IFR in the browser 

 
During the logon process you will be asked to select an available Usage Profile that gives 
your user the authorizations for accessing all necessary functions and creating all the 
ESR objects required for this example. 
 

 
Picture: Selecting a Usage Profile. 

 
2) On the left side of the initial screen of the Enterprise Services Builder navigate to tab strip 

Design Objects. There you can find an entry Local Software Component Versions. Mark 
this entry and click the right mouse button to open the related popup menu which 
contains New as the only option. Choose New. 
 

 
Picture: Creating a new Local Software Component Version. 

 
On the following popup screen follow the path Work Areas  Software Component 
Version. On the right side of this screen chose radio button Import from SLD (we want to 
import our EnSWCV from the SLD) and click on button Display. 
 
Another popup will come up where you can enter our example EnSWCV as a search term 
in field Search (enter e.g. PIZENH*) and then click on button Go. Select your EnSWCV 
PIZENHCOMPONENT in the result list and then click on button Import. Afterwards you 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

301 

301 

are back on the initial popup. Finally click on button Create to import the selected 
EnSWCV from the System Landscape Directory into the ESR. 
 

 
Picture: Importing the EnSWCV from SLD into ESR. 

 

8.3.2 Creating a Namespace in the EnSWCV 

After the EnSWCV has been imported you get back to the Enterprise Services Builder screen. 
On the right side of this screen you can now see the details of the imported EnSWCV where 
you need to do the following adjustments. 
 
On tab strip Definition select Original Language English from the dropdown list and click on 
the Save button. Then click again on the button Edit next to the Save button to enable the 
next adjustments for the EnSWCV. 
 

 
Picture: Defining the Original Language. 

 
On the bottom of the same tab strip you can find the list of Namespaces assigned to your 
EnSWCV. Click on button Open to create a Namespace for the EnSWCV. 
 

 
Picture: Create a new Namespace. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

302 

302 

A new tab strip is opened on the right side of the Enterprise Services Builder where you can 
now define the required Namespace. First click on button Edit then on button Insert Line. 
Enter the following data in the new table line to define the Namespace and then click on 
button Save. 
 

Field Value Comment 
Name http://zenhhptm.com/xi/enhancement The Namespace. 

Description zenhhptm.com The Namespace description. 

 

 
Picture: Defining the new Namespace. 

 
Finally navigate to tab strip Change Lists and activate the created Namespace as follows (this 
activation step will be repeated also for other objects created in the next steps). In the 
Change List tree expand the entry with the EnSWCV where you can find a Standard Change 
List on the next tree level. Right mouse click on this entry opens a popup menu. Select option 
Activate. The following popup contains a list of all objects to be activated. Make sure that all 
objects are marked for activation and click on button Activate. 

 

 
Picture: Activating a Standard Change List in the Enterprise Services Builder. 

 

8.3.3 Create a Data Type in the EnSWCV. 
In the next step, a Data Type for the Route ID is created. This data type is used to represent 
the additional content of the service message to be enhanced in this example. 
 
Navigate to the tab strip Design Objects and in the object tree expand the path down to the 
Namespace created in the previous step located in the Modeling folder of your EnSWCV. The 
path should look as follows. 
 

PIZENHHPTMCOMPONENT 9.3 of www.zenhhptm.com  PIZENHHPTMCOMPONENT 9.3 

of www.zenhhptm.com  Modeling  http://zenhhptm.com/xi/enhancement. 

 
Right mouse click on the Namespace opens a popup menu. Choose the option New. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

303 

303 

 
Picture: Creating a new object in the Namespace. 

 

On the following popup follow the path Interface Objects  Data Type. On the right side 

enter the following data to specify the Data Type for the example Route ID: 
 

Field Value Comment 
Name Route Name of the data type. 

Namespace http://zenhhptm.com/xi/enhancement The Namespace that the data type will 
be located in (predefined). 

Software Component 
Version 

PIZENHHPTMCOMPONENT 9.3 of 
www.zenhhptm.com 

The name of the assigned EnSWCV 
(predefined). 

Classification Core Data Type Specifies the kind of Data Type to be 
created. 

Description Route ID for Enhancement Demo Any text that describes the semantics 
of the Data Type Enhancement. 

 
Click on button Create to create the entered Data Type Enhancement.  
 

 
Picture: Creating the Data Type for the SAP TM side. 

 
When returning back to the Enterprise Services Builder you can see on the right side that a 
tab strip was added displaying the details of the new Data Type. Here you should now do the 
following changes. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

304 

304 

 
Picture: Defining the details of the new Data Type. 

 
Finally, the new Data Type should look as follows: 
 

 
Picture: The final data type after Save. 

 
Activate the Standard Change List on tab strip Change Lists as already described in section 
8.3.2 to activate the new data type.  
 

8.3.4 Create the Data Type Enhancement for the TM side. 
In the next step we create a Data Type Enhancement for the involved message type 
TranspReqSUITEReqTranspReq on the SAP TM side. It will be used to enhance the 
message type on the receiving side in our example. 
 
Navigate to the tab strip Design Objects and in the object tree expand the path down to the 
Namespace created in the previous steps located in the Modeling folder of your EnSWCV. 
The path should look as follows. 
 

PIZENHHPTMCOMPONENT 9.3 of www.zenhhptm.com  PIZENHHPTMCOMPONENT 9.3 

of www.zenhhptm.com  Modeling  http://zenhhptm.com/xi/enhancement. 

 
Right mouse click on the Namespace opens a popup menu. Choose the option New. 

 

 
Picture: Creating a new object in the Namespace. 

 

On the following popup follow the path Interface Objects  Data Type Enhancement. On the 

right side enter the following data to specify the Data Type Enhancement for the example 
message type TranspReqSUITEReqTransReq in the corresponding SAP TM namespace. 
 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

305 

305 

 

Field Value Comment 
Name zenhhptm Name of the Data Type Enhancement. 

Namespace http://zenhhptm.com/xi/enhancement The Namespace that the Data Type 
Enhancement will be located in 
(predefined). 

Software Component 
Version 

PIZENHHPTMCOMPONENT 9.3 of 
www.zenhhptm.com 

The name of the assigned EnSWCV 
(predefined). 

Description ZENH HP TM Enhancement Any text that describes the semantics 
of the Data Type Enhancement. 

 
Click on button Create to create the entered data type.  
 

 
Picture: Creating the Data Type Enhancement for the SAP TM side. 

 
When returning back to the Enterprise Services Builder you can see on the right side that a 
tab strip was added displaying the details of the new Data Type Enhancement. Here you 
should now do the following changes. In field Data Type Enhancement use the F4-Help and 
enter TranspReqSUITEReqTranspReq as search term. 
 

 
Picture: Adjusting details of the Data Type Enhancement. 

 
In the search result list choose the entry for message type TranspReqSUITEReqTranspReq 
with the assigned namespace http://sap.com/xi/TMS/Global. Then click on button Apply. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

306 

306 

 
Picture: Searching for the correct Message Data Type. 

 
When returning back to the Enterprise Services Builder screen you should see again the 
details your Data Type Enhancement. On tab strip Enhancement Definition select the listed 
Data Type Enhancement ZENHPTM and click on button Insert New Lines. On the popup 
menu choose option Insert Subelement. 
 

 
Picture: Insert a sub element to the Data Type Enhancement. 

 
In the new input line enter the attribute name Route in column Name. Then use the F4-Help in 
field Type to assign the data type Route that was created in the previous section.  
 

 
Picture: Adding an attribute to the Data Type Enhancement. 

 
On the F4-Help screen navigate to tab strip Hierarchical Search Help and then drill down to 
the elements of your EnSWCV. There you can find again the data type Route created in 
section 8.3.3. Double click on data type Route in the hierarchy to take it over directly of click 
on it, mark in the search result list and click on button Apply. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

307 

307 

 
Picture: Search for the Data Type in the EnSWCV. 

 
Save the Data Type Enhancement and then activate the Standard Change List on tab strip 
Change Lists as already described in section 8.3.2 to activate the new Data Type 
Enhancement. The Data Type Enhancement for the TM side should finally look as follows. 
 

 
Picture: The final Data Type Enhancement for the TM side. 

 

8.3.5 Create an Enhancement Data Type for the ECC side. 

Also for the ECC side of the example integration scenario we create a Data Type 
Enhancement for the involved message type TranspReqSUITEReqTranspReq. It will be used 
to enhance the message type on the sending side in our example. 
 
Navigate to the tab strip Design Objects and in the object tree expand the path down to the 
Namespace created in the previous steps located in the Modeling folder of your EnSWCV. 
The path should look as follows. 
 

PIZENHHPTMCOMPONENT 9.3 of www.zenhhptm.com  PIZENHHPTMCOMPONENT 9.3 

of www.zenhhptm.com  Modeling  http://zenhhptm.com/xi/enhancement. 

 
Right mouse click on the Namespace opens a popup menu. Choose the option New. 

 

 
Picture: Creating a new object in the Namespace. 

 

On the following popup follow the path Interface Objects  Data Type Enhancement. On the 

right side enter the following data to specify the Data Type Enhancement for the example 
message type TranspReqSUITEReqTransReq in the corresponding ECC namespace. 
 
 
 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

308 

308 

Field Value Comment 
Name zenhhpecc Name of the Data Type Enhancement. 

Namespace http://zenhhptm.com/xi/enhancement The Namespace that the Data Type 
Enhancement will be located in 
(predefined). 

Software Component 
Version 

PIZENHHPTMCOMPONENT 9.3 of 
www.zenhhptm.com 

The name of the assigned EnSWCV 
(predefined). 

Description ZENH HP ECC Enhancement Any text that describes the semantics 
of the Data Type Enhancement. 

 
Click on button Create to create the entered data type.  
 

 
Picture: Creating the Data Type Enhancement for the ECC side. 

 
When returning back to the Enterprise Services Builder you can see on the right side that a 
tab strip was added displaying the details of the new Data Type Enhancement. Here you 
should now do the following changes. In field Data Type Enhancement use the F4-Help and 
enter TranspReqSUITEReqTranspReq as search term. 
 

 
Picture: Adjusting details of the Data Type Enhancement. 

 
In the search result list choose the entry for message type TranspReqSUITEReqTranspReq 
with the assigned namespace http://sap.com/xi/APPL/SE/Global. Then click on button Apply. 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

309 

309 

 
Picture: Searching for the correct Message Data Type. 

 
When returning back to the Enterprise Services Builder screen you should see again the 
details your Data Type Enhancement. On tab strip Enhancement Definition select the listed 
Data Type Enhancement ZENHPECC and click on button Insert New Lines. On the popup 
menu choose option Insert Subelement. 
 

 
Picture: Insert a sub element to the Data Type Enhancement. 

 
In the new input line enter the attribute name Route in column Name. Then use the F4-Help in 
field Type to assign the data type Route that was created in the previous section.  
 

 
Picture: Adding an attribute to the Data Type Enhancement. 

 
On the F4-Help screen navigate to tab strip Hierarchical Search Help and then drill down to 
the elements of your EnSWCV. There you can find again the data type Route created in 
section 8.3.3. Double click on data type Route in the hierarchy to take it over directly of click 
on it, mark in the search result list and click on button Apply. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

310 

310 

 
Picture: Search for the Data Type in the EnSWCV. 

 
Save the Data Type Enhancement and then activate the Standard Change List on tab strip 
Change Lists as already described in section 8.3.2 to activate the new Data Type 
Enhancement. The Data Type Enhancement for the TM side should finally look as follows. 
 

 
Picture: The final Data Type Enhancement for the TM side. 

 
With this, the development steps in the ESR are complete. On tab strip Design Objects of the 
Enterprise Services Builder, you should now see the following activated objects: 
 

 
Picture: The created objects in the EnSWCV. 

 
The steps in the last two sections describe how to enhance the message data type of the 
involved service on the receiver (section 8.3.4) and on the sender side (section 8.3.5). When 
you take a look at the corresponding message data types in the related namespaces 
http://sap.com/xi/TMS/Global (for TM / receiver) and http://sap.com/xi/APPL/SE/Global (for 
ECC / sender) you can see the created Data Type Enhancements attached to them. 
 

 
Picture: Example - The message data type enhancement for the ECC side. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

311 

311 

8.4 Development in the Backend Systems 
Before the enhanced service message can be used to exchange also the additional content 
between the ECC- and the TM-Backend System, a proxy structure for the enhancement must 
be created in both systems. With this, the Data Dictionary (DDIC) representation of the 
involved service message, i.e. the Service Message Data Type is enhanced with the 
additional content and also the WSDL representation of the service message is 
(automatically) enhanced. 
 
The following sections describe the required steps for generating the corresponding proxies in 
both backend systems (ERP and TM) and finally how to implement the BAdIs of the involved 
service implementation which will allow filling the new service message content on the sender 
side (ERP) and extracting the new service message content on the receiving side (TM). 
 
Note: The new ESR content created in the previous sections will only be available and visible 
in the ECC- and TM-Backend System if the RFC-Connection SAP_PROXY_ESR of 
connection type G (i.e. a HTTP Connection to External Server) is set up correctly in the 
systems. This connection is required to allow accessing the new ESR content from the ECC- 
and TM-System which is prerequisite for generating corresponding backend objects. 
 

8.4.1 Generating the Enhancement Proxy Structure in ECC 
Logon to the ECC System (ERP) and start transaction SPROXY. With the above mentioned 
RFC SAP_PROXY_ESR the ESR content created in the previous section is also transferred 
to the ECC System. In the Enterprise Services Browser navigate to your EnSWCV and the 
objects that were created there in the ESR. 
 
Besides other navigation options you can navigate along the following path as shown in the 
picture below: Source  ESR  PIZENHHPTMCOMPOMENT (the example EnSWCV)  
Namespaces  …  
 

 
Picture: The example EnSWCV in SPROXY. 

 
In this section, the enhancement proxy for the ECC side (i.e. the sender) is generated as 
follows. Navigate to the Data Type Enhancements assigned to the example namespace. Mark 
Data Type Enhancement ZENHPECC, right mouse click to open the popup menu and choose 
option Generate. 
 

 
Picture: Start generating a Data Type Enhancement Proxy. 

 
A wizard will come up which helps you specifying all further information required for the 
generation. On the initial wizard screen, enter the following data: 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

312 

312 

Field Value Comment 
Local Object [false, not set] Set this flag if you want to make the 

proxy a local object. 

Package Example: ZENH_PACKAGE An existing package where that the 
proxy objects shall be assigned to. 

Request/Task Example: ZMEK123456 The request/task that will allow 
transporting the generated proxy 
objects through the system landscape. 

Prefix Example: ZENH A unique prefix is required to prevent 
naming conflicts with other, already 
existing objects  see also F1-Help of 
this field. 

 

 
Picture: The wizard for the Proxy Generation (ECC side example). 

 
On the initial wizard screen click on button Cont. (Continue) and on the next screen click on 
button Complete to start generating the proxy for Data Type Enhancement ZENHHPECC. 
When the generation is finished, save and activate the displayed Data Type Enhancement. 
 

 
Picture: The activated Data Type Enhancement after Proxy Generation (ECC). 

 
As shown in the picture above, you can e.g. click on tab strip Objects to see the DDIC objects 
that have been created during Proxy Generation. 
 

 
Picture: The generated DDIC objects. 

 
As you can see there, the Data Type Enhancement ZENHHPECC was generated as DDIC 
structure ZENHZENHHPECC (remember that we used the prefix ZENH). Moreover, also the 
Data Type Route was generated as DDIC object (Data Element) ZENHROUTE. When you go 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

313 

313 

back to the tab strip Properties, you can click on the enhanced Service Message Data Type 
TranspReqSUITEReqTranspReq (in field Enhancement Datatype Name) to verify that it has 
been enhanced by the Data Type Enhancement ZENHHPECC. 
 
When the Service Message Data Type is displayed, navigate to tab strip External View and 
scroll down to the end of the hierarchy with the data type elements. In this example you 
should now see the created Data Type Enhancement included in the Service Message Data 
Type. 
 

 
Picture: The enhanced Service Message Data Type (ECC). 

 
In transaction SPROXY you can now see that the ECC-related Data Type Enhancement 
ZENHHPECC as well as the data type Route have been generated and activated. They can 
now be used in the context of the BAdI implementation on the (ECC) sender side fill the new 
service message content for transfer to the related TM-System. 
 
 

 
Picture: The generated and active Data Type and Data Type Enhancement (ECC). 

 
You can now also verify via transaction SPROXY that the corresponding Outbound Interface 
ODP_TransportationRequestSUITERequest_Out contains the enhancement as it uses the 
Service Message Data Type TranspReqSUITEReqTranspReq to define the data that can be 
send by it. 
 

 
Picture: Searching for the Outbound Interface. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

314 

314 

As shown in the picture above, start transaction SPROXY and in the Enterprise Services 
Browser click on button Open Object. On the following popup activate radio button Use 
External Key, enter the following data and click on button Display. 
 

Field Value Comment 
Gen. Appl. Enterprise Services Repository The Generation Source of the object. 

Type Service Consumer  

Name  ODP_TransportationRequestSUITERequest_Out Name of the Outbound Interface. 

Namespace http://sap.com/xi/APPL/SE/Global Automatically filled when you use the 
F4-Help to search for the name in the 
field above. 

 

 
Picture: Outbound Interface using the enhanced Service Message Data Type. 

 

8.4.2 Generating the Enhancement Proxy Structure in TM 

The same steps described in the previous section 8.4.1 on the ECC side now have to be 
done as well on the TM side to allow receiving and processing the new service message 
content. Logon to the TM System and start transaction SPROXY. In the Enterprise Services 
Browser navigate to your EnSWCV and the objects that were created there in the ESR. 
 
Besides other navigation options you can navigate along the following path as shown in the 
picture below: Source  ESR  PIZENHHPTMCOMPOMENT (the example EnSWCV)  
Namespaces  …  
 

 
Picture: The example EnSWCV in SPROXY. 

In this section, the enhancement proxy for the TM side (i.e. the receiver) is generated as 
follows. Navigate to the Data Type Enhancements assigned to the example namespace. Mark 
Data Type Enhancement ZENHPTM, right mouse click to open the popup menu and choose 
option Generate. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

315 

315 

 
Picture: Start generating a Data Type Enhancement Proxy. 

 
Again the wizard will come up to help you specifying all further information required for the 
proxy generation. On the initial wizard screen, enter the following data: 
 

Field Value Comment 
Local Object [false, not set] Set this flag if you want to make the 

proxy a local object. 

Package Example: ZENH_PACKAGE An existing package where that the 
proxy objects shall be assigned to. 

Request/Task Example: ZMTK987654 The request/task that will allow 
transporting the generated proxy 
objects through the system landscape. 

Prefix Example: ZENH A unique prefix is required to prevent 
naming conflicts with other, already 
existing objects  see also F1-Help of 
this field. 

 

 
Picture: The wizard for the Proxy Generation (ECC side example). 

 
On the initial wizard screen click on button Cont. (Continue) and on the next screen click on 
button Complete to start generating the proxy for Data Type Enhancement ZENHHPTM. 
When the generation is finished, save and activate the displayed Data Type Enhancement. 
 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

316 

316 

Picture: The activated Data Type Enhancement after Proxy Generation (TM). 
 

As shown in the picture above, you can e.g. click on tab strip Objects to see the DDIC objects 
that have been created during Proxy Generation. 
 

 
Picture: The generated DDIC objects. 

 
As you can see there, the Data Type Enhancement ZENHHPTM was generated as DDIC 
structure ZENHZENHHPTM (remember that we used the prefix ZENH). Moreover, also the 
Data Type Route was generated as DDIC object (Data Element) ZENHROUTE. When you go 
back to the tab strip Properties, you can click on the enhanced Service Message Data Type 
TranspReqSUITEReqTranspReq (in field Enhancement Datatype Name) to verify that it has 
been enhanced by the Data Type Enhancement ZENHHPTM. 
 
When the Service Message Data Type is displayed, navigate to tab strip External View and 
scroll down to the end of the hierarchy with the data type elements. In this example you 
should now see the created Data Type Enhancement included in the Service Message Data 
Type. 
 

 
Picture: The enhanced Service Message Data Type (TM). 

 
In transaction SPROXY you can now see that the TM-related Data Type Enhancement 
ZENHHPTM as well as the data type Route have been generated and activated. They can 
now be used in the context of the BAdI implementation on the (TM) receiver side to extract 
the new service message content to be processed by the TM-System. 
 
 

 
Picture: The generated and active Data Type and Data Type Enhancement (TM). 

 
You can now also verify via transaction SPROXY that the corresponding Inbound Interface 
IntracompanyTransportationRequestRequest_In contains the enhancement as it uses the 
service message data type TranspReqSUITEReqTranspReq to define the data that can be 
received by it. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

317 

317 

 
Picture: Searching for the Inbound Interface. 

 
As shown in the picture above, start transaction SPROXY and in the Enterprise Services 
Browser click on button Open Object. On the following popup activate radio button Use 
External Key, enter the following data and click on button Display. 
 

Field Value Comment 
Gen. Appl. Enterprise Services Repository The Generation Source of the object. 

Type Service Provider  

Name  IntracompanyTransportationRequestRequest_In Name of the Outbound Interface. 

Namespace http://sap.com/xi/TMS/Global Automatically filled when you use the 
F4-Help to search for the name in the 
field above. 

 

 
Picture: Inbound Interface using the enhanced Service Message Data Type. 

 

8.4.3 BAdI Implementation in ECC 
With the steps described so far, the service message has been enabled to transfer additional 
content. In the example this is the additional information represented with a Route ID. In the 
next step we need to ensure that the additional service message content is also filled from the 
related backend data source. 
 
To fill the additional enhancement content of the service message on the ECC side before it is 
send over to the connected TM-System, you can implement a BAdI. The BAdI relevant in this 
example is SHP_BADI_FILL_XI_MESSAGE. Start transaction SE18, enter this BAdI name in 
field BAdI Name and click on button Display. 
 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

318 

318 

 
Picture: Transaction SE18. 

 
On the next screen navigate to the Implementations of the BAdI as shown in the picture below 
and start creating a new BAdI implementation. Note that the BAdI also provides an example 
implementation for SAP TM that you can take a look at to see how the BAdI can be used. 
 

 
Picture: Creating a BAdI Implementation for the example. 

 
On the first popup click on button Create Enhancement Implementation, provide the following 
data on the second popup and there click on button Enter. 
 

Field Value Comment 
Enhancement 
Implementation 

ZENH_FILL_XI_MESSAGE Name of the Enhancement 
Implementation 

Short Text ECC TM Integration Enhancement Demo Description 

 

 
Picture: Creating the Enhancement Implementation. 

 
You get back to the first popup and can see your Enhancement Implementation in the list. 
Double click on your Enhancement Implementation, on the next popup enter the following 
data and finally click on button Create Enhancement Implementation. 
 

Field Value Comment 
BAdI Implementation ZENH_FILL_XI_MESSAGE Name of the BAdI Implementation. 

Description ECC TM Integration Enhancement Demo Description 

Implementing Class ZCL_ENH_FILL_XI_MESSAGE The name of the Implementing Class. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

319 

319 

 
Picture: Defining the Implementing Class for the BAdI Implementation 

 
On the next screen you can see your BAdI Implementation ZENH_FILL_XI_MESSAGE. Open 
the hierarchy and double click on section Implementing Class. On the right side of the screen 
you can now see the details of your implementing class, i.e. the Interface, the class and the 
available methods. 
 

 
Picture: Staring the implementation of method FILL. 

 
You can now start implementing method IF_SHP_BADI_FILL_XI_MESSAGE~FILL by double 
clicking on it. The following lines of code show an implementation example for this method: 
 
METHOD if_shp_badi_fill_xi_message~fill. 

 

  FIELD-SYMBOLS: <fs_transpreq> TYPE sapplsef_trq_transp_req. 

 

  DATA: lo_trd0  TYPE REF TO cl_shp_xi_message_trd0, 

        lv_vbeln TYPE vbeln_vl. 

 

  TRY. 

      "Cast XI message provided from outside 

      lo_trd0 ?= io_ximsg. 

 

      "Assign Message content to local field symbol to adjust content 

      ASSIGN lo_trd0->ms_trd0-transportation_request_suitere- 

             transportation_request TO <fs_transpreq>. 

      "Determine Sales Order Number from message content 

      CALL FUNCTION 'CONVERSION_EXIT_ALPHA_INPUT' 

        EXPORTING 

          input  = <fs_transpreq>-id 

        IMPORTING 

          output = lv_vbeln. 

 

      "Determine Route - the enhanced Message content – 

      "based on Sales Order Number. The Route can be read 

      "from table LIKP - SD Document: Delivery Header Data 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

320 

320 

      SELECT SINGLE route INTO <fs_transpreq>-zenhroute 

        FROM likp 

        WHERE vbeln = lv_vbeln. 

 

    CATCH cx_sy_move_cast_error. 

      "Error Handling 

  ENDTRY. 

 

  "In addtition to the already provided standard conetent, 

  "the messagenow contains also the data for the enhanced  

  "attribute in the message type 

 

ENDMETHOD. 

 
In general, this method implementation takes the Sales Order Number from the already 
existing content of the service message to be sent and uses it for reading the attribute Route 
from the Data Base Table LIKP (the Delivery Header Data). The result of the corresponding 
SELECT SINGLE statement is directly moved into the message enhancement content 
(attribute ZENHROUTE). 
 

8.4.4 BAdI Implementation and BO Enhancement in TM 

To extract the additional enhancement content from the service message on the TM side 
before it is processed in the receiving TM-System, you can implement the corresponding 
BAdI. The BAdI relevant in this example is /SCMTMS/TRQ_SE_TPNRQ_REQ. On TM side 
you can find this BAdI in the IMG (transaction SPRO) under the following path: 
 
SAP Transportation Management  Transportation Management  Business Add-Ins 
(BAdIs) for Transportation Management  Integration  Enterprise Services  Forwarding 
Order Management  Forwarding Order  BAdI for TransportationRequestRequest_In. 
 
 
You can start the implementation here or start transaction SE18, enter this BAdI name in field 
BAdI Name and click on button Display. 
 

 
Picture: Transaction SE18. 

 
On the next screen navigate to the Implementations of the BAdI as shown in the picture below 
and start creating a new BAdI implementation. 
 
 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

321 

321 

 
Picture: Creating a BAdI Implementation for the example. 

 
On the first popup click on button Create Enhancement Implementation, provide the following 
data on the second popup and there click on button Enter. 
 

Field Value Comment 
Enhancement 
Implementation 

ZENH_INTRACOMP_TRQREQ_IMPL Name of the Enhancement 
Implementation 

Short Text ECC TM Integration Enhancement Demo Description 

 

 
Picture: Creating the Enhancement Implementation. 

 
You get back to the first popup and can see your Enhancement Implementation in the list. 
Double click on your Enhancement Implementation, on the next popup enter the following 
data and finally click on button Create Enhancement Implementation. 
 

Field Value Comment 
BAdI Implementation ZENH_INTRACOMP_TRQREQ_IN Name of the BAdI Implementation. 

Description ECC TM Integration Enh. Demo Impl. for 
Intracomp TRQREQ IN 

Description 

Implementing Class ZCL_ENH_INTRACOMP_TRQREQ_IN The name of the Implementing Class. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

322 

322 

 
Picture: Defining the Implementing Class for the BAdI Implementation 

 
Note: In case such a BAdI provides one or more example implementations, another popup 
comes up which allows create a new, empty BAdI Implementation, copy existing or inherit 
from existing example implementations.  
 
On the next screen the BAdI Implementation ZENH_INTRACOMP_TRQREQ_IN can be 
seen. Open the hierarchy and double click on section Implementing Class. On the right side 
of the screen you can now see the details of your implementing class, i.e. the Interface, the 
class and the available methods. 
 

 
Picture: Staring the implementation of method CHANGE_MODIFICATION. 

 
Start implementing method /SCMTMS/TRQ_IF_SE_REQREQ~CHANGE_MODIFICATION by 
double clicking on it. The following lines of code show an implementation example: 
 
METHOD /scmtms/trq_if_se_reqreq~change_modification. 

 

  FIELD-SYMBOLS: <ls_root>         TYPE /scmtms/s_trq_root_k, 

                 <ls_modification> TYPE /bobf/s_frw_modification. 

 

  " Process all TRQ Roots - ok, usualy it's just one at a time... 

  LOOP AT ct_modification ASSIGNING <ls_modification> 

    WHERE node = /scmtms/if_trq_c=>sc_node-root. 

 

    "Take the data of the Root Modification and enrich it 

    "with the content for the new enhancement field 

    "NOTE(!): The BO TRQ Root Node must be enhanced first(!) 

    "by the corresponding extension field ZENHROUTE(!) 

    ASSIGN <ls_modification>-data->* TO <ls_root>. 

    <ls_root>-zenhroute = is_input-transportation_request-zenhroute. 

 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

323 

323 

  ENDLOOP. 

 

ENDMETHOD. 

 
The method receives the message data already via its importing parameter IS_INPUT, 
including the enhanced content. Remember that on this TM side, the data is extracted from 
the service message, is transferred into this DDIC representation and then finally used to 
create or update a corresponding BOPF Business Object Instance (in this example an Order 
Based Transportation Request which is technically an instance of the Business Object 
/SCMTMS/TRQ). 
 
To create a new or update an existing BO instance, modifications are created (see e.g. 
section 3.2.11 in this document). The above mentioned method allows adjusting or adding 
modifications before they are finaly executed and persisted. In this example implementation, 
the modification for the Root Node of the TRQ (new or to be updated) is identified and the 
data of the related attributes is enhanced with taking also over the new attribute 
ZENHROUTE. 
 
But note: When you just simply implement the method as shown, you will first of all run into an 
activation error. The reason is that the TRQ Root Node at this point in time does not have an 
attribute ZENHROUTE that could be filled with the content coming from the service message. 
 
Therefore, you need to add this attribute as an enhancement field to the Root Node of the 
TRQ BO or you implemet the method in a way that it mapps the new service message 
attribute onto an attribute that already exists on the TRQ Root. So you need to ensure that a 
service message enhancement (in this example a simple additional attribute) can be really 
processed by the SAP TM Backend and the involved BOPF Business Object (how to create 
field extendions on a BO node is described in section 3.3.4). 
 
With the described example you can now send a sales order with additional information from 
ERP to SAP TM. Go to http://help.sap.com/transportationmanagement where you can find 
general and detailed information on how to setup this ERP-TM Integration via Enterprise 
Services. Navigate e.g. along the following path: SAP Transportation Management  SAP 
Transportation Management 9.2  Configuration and Deployment Information. Click on the 
link to the SAP Service Marketplace provided there. On the following page you can open the 
list of Integration Guides.  
 
 
 
 
 
 
 
 
 
 
 

  

http://help.sap.com/transportationmanagement


SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

324 

324 

9 Enhancing further Objects, Features & Functions 

9.1 Gantt Chart for Planning Functionality 
As per SAP TM 9.2 a Gantt Chart was introduced that allows a visual and interactive 
transportation planning. In general, the Gant chart UI is built with HTML5 means. 
 
The Gantt chart is integrated into the standard Web Dynpro (FPM/FBI) based UI via a so 
called HTML Island that is integrated then into a Web Dynpro Freestyle Component (UIBB). 
The interfaces IF_FPM_UI_BUILDING_BLOCK and IF_FPM_UIBB_MODEL are implemented 
by this Freestyle Component. 
 

 
Picture: Example Gantt Chart for a set of planned Freight Orders. 

 
Java Script code is used in a generic reuse part for drawing the Gant chart. An application 
(SAP TM, proxy) part contains Java Script code that provides application and customizing 
data to the Gant chart and supports the mapping between Gantt Chart and application data. 
 
Note: Currently, with SAP TM 9.2 and SAP TM 9.3 development just finished it is not possible 
to do enhancements in the mentioned Java Script code parts. 
 
In the picture above you can see the maximized Gantt Chart view for a set of planned Freight 
Orders. The Freight Orders in this setup are shown with their different activities that are 
planned for their execution. The Freight Order selected in the picture above shows the 
following activity sequence: Loading (blue), Travel to the first stop (green), Unloading (at the 
first stop, orange), Travel to final stop (green) and Unloading (at the final stop, orange). 
 
While enhancing Java Script code of the Gantt Chart is currently not supported, it is 
nevertheless possible to define e.g. the layout of the Transportation Cockpit and define e.g. a 
color schema for the Gantt Chart. The following example shows how to make use of the 
available options for defining such layouts in general, including the Gantt Chart. 
 
 
  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

325 

325 

1) Start SAP TM in the NWBC environment and follow the path Application Administration  
Planning  General Settings  Page Layouts  Page Layouts for Transportation 
Cockpit. 
 
Click on button New to create a Transportation Cockpit Layout. Provide the following 
details in section Layout: 
 

Field Value Comment 
Page Layout ZENH_GANTT_CHART The name of the new Transportation Cockpit Layout. 

Validity User The new Layout shall be valid for the specified user. 
Other options are validity for all users or a user role 
to be specified. 

User [e.g. your User Name] Enter e.g. you User Name here if you want the new 
Layout to be only valid for yourself. 

Activate Command 
Line 

[space] If set, a command line is displayed that allows you 
entering planning instructions, similar to a Shell 
program in an OS were you can type in commands 
to get things done. 

Transportation 
Proposal Layout 

Standard Layout The Layout for the Transportation Proposal (TP) 
Screen; if you create TPs along with using your new 
Layout, the specified Layout will be used for the TP 
Screen.  

 

 
Picture: Creating a new Transportation Cockpit Layout. 

 
 

2) Open section Visibility Pushbutton to define which actions shall be visible on the toolbar 
of the Transportation Cockpit. Activate the actions that are required in the context of the 
new Transportation Cockpit Layout. 
 

 
Picture: Defining the visibility of actions on the Transp. Cockpit toolbar. 

 
  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

326 

326 

3) Below the section Visibility Pushbutton you can find the details for all areas that you can 
include into a Transportation Cockpit Layout. For each area you can define its position 
and width on the Layout as well as its visibility. For the example, use the following details 
for each area: 
 

Area / Field Field/Value Value Comment 

Gantt Chart 
Position of Screen Area Bottom Left  The Gantt Chart shall be 

displayed in the bottom left 
section of the Transportation 
Cockpit. 

Width 50%  50% of the Screen Width shall 
be used. 

Content of Gantt Chart 

Gantt Chart Display Yes The Gantt Chart content shall be 
displayed in the Layout 

 Layout ZENH_TRK_AND_TRL The Gantt Chart Layout used 
here is actually customizing that 
will be created in the next step 
of this example. 

Requirements 

Position of Screen Area Top Left   

Width 50%   

Content of Requirements Area 

Freight Unit Stages Display Yes  

 View Standard View  

Freight Unit Hierarchy Display No  

 View Standard View  

Requirement Groups 

Position of Screen Area Not Visible   

Transportation Unit 
Position of Screen Area Not Visible   

Orders 

Position of Screen Area Top Right   

Width 50%   

Content of Orders Area 

Freight Orders/Freight 
Bookings 

Display Yes  

 View Standard View  

[all other content] Display No  

 View Standard View  

Order Details 

Position of Screen Area Bottom Right   

Width 50%   

Content for Order Details Area 

Overview, Stages, Carrier 
Ranking, Allocation, 
Charges 

Display Yes  

 View Standard View  

[all other content] Display No  

 View Standard View  

Resources 

Position of Screen Area Not Visible   

Hierarchies 

Position of Screen Area Not Visible   

Map 

Position of Screen Area Not Visible   

 
4) As for the Gantt Chart area settings mentioned in the table above, the layout for the 

content of the Gantt Chart used in this Transportation Cockpit Layout is defined in 
customizing. The Gantt Chart customizing can be found in the IMG under the following 
path: SAP Transportation Management  Transportation Management  Basic 
Functions  Gantt Chart. 
 

  



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

327 

327 

5) Navigate along the following IMG path: SAP Transportation Management  
Transportation Management  Basic Functions  Gantt Chart  Define Color Schemes 
and Patterns for Gant Chart. 

 
Here you can define color schemes and patterns for displaying activities, resources. It 
allows also defining threshold values e.g. for resources when the color for the 
corresponding capacity shall change. Own colors can be defined too by providing RGB 
color codes. Moreover, patterns can be defined that represent e.g. the status of an 
activity. 
 

 
Picture: Color Schemes and Patterns for Gantt Chart. 

 
Some standard colors, patterns and color schemes for activities, documents, resources 
and utilization are delivered with the standard SAP TM. Of course you can create and 
define your very own color schemes with all the available details. 
 

6) Navigate along the following IMG path: SAP Transportation Management  
Transportation Management  Basic Functions  Gantt Chart  Define Field Lists and 
Label Schemes for Gantt Chart. 

 
Here you can define field lists that represent the data of documents and resources 
displayed as columns in the selection panel of the Gantt Chart. Before you can define 
such a field list, the fields and their source (i.e. where the data actually comes from) 
needs to be defined here too. 
 
Depending on the object context, an available field can be provided with data from 
different field sources. The following table shows the available objects and the DDIC 
structures that define the content for the corresponding fields: 
 

Object DDIC Structure Comment 
Activity /SCMTMS/S_GNT_ACTIVITY DDIC structure with fields for Activities. 

Freight Unit /SCMTMS/S_GNT_ORDER DDIC structure with fields for TOR Root. 

Handling Resource /SCMTMS/S_GNT_RESOURCE DDIC structure with fields for Resources. 

Road Freight Order /SCMTMS/S_GNT_ORDER DDIC structure with fields for TOR Root. 

Trailer /SCMTMS/S_GNT_RESOURCE DDIC structure with fields for Resources. 

Trailer Unit /SCMTMS/S_GNT_RESOURCE DDIC structure with fields for Resources. 

Truck /SCMTMS/S_GNT_RESOURCE DDIC structure with fields for Resources. 

 
At runtime, these structures are then filled via Move-Corresponding. Only the fields 
defined in the field lists used for a Layout are read (to keep performance high). I you add 
e.g. an Extension Field to the Root Node of BO /SCMTMS/TOR, it will automatically be 
available in the DDIC structure /SCMTMS/S_GNT_ORDER and filled at runtime via 
Move-Corresponding. In case you want to add a field which is not already read in 
standard, besides adding such a field to the DDIC structure, you would have to place 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

328 

328 

some enhancement coding in the data provisioning class (i.e. there is no automatic Move-
Corresponding done in this case). 
 

 
Picture: Field Lists and Label Schemes. 

 
Moreover you can define Labels that can then be assigned to Activities or Documents 
that are to be displayed in the Gantt Chart. If for example a Freight Order is displayed in 
the Gantt Chart represented by time bar you can define that at the beginning of this bar 
the Source Location, in the middle the Document Number and at the end of the bar the 
Destination Location shall be displayed. As a tooltip for the bar you can e.g. define a label 
that combines all three mentioned fields. 
 

7) Finally navigate along the following IMG path: SAP Transportation Management  
Transportation Management  Basic Functions  Gantt Chart  Define Layouts for 
Gantt Charts. 
 
With the settings done here you define how the Gantt Chart will look like when you use 
this Layout customizing for the specification of the Gant Chart in a Transportation Cockpit 
Layout as described in steps 3 (see comment in table) and 4. 
 
You can define hierarchies, views and layouts here. Again, there is a set of predefined 
hierarchies, views and layouts delivered with the standard. Of course you can create your 
very own set of these too. 
 

 
Picture: Hierarchies, Views and Layouts. 

 
Remark: This section currently represents only a draft version for the Gantt Chart topic. A 
fully detailed example of how to configure a Gantt Chart Layout and the related 
customizing will be added in a next version of the document. 

 
 
 

   



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

329 

329 

9.2 Transportation Charge Management Enhancements 

9.2.1 Adding a new scale base 

(Short summary – detailed description with examples will follow soon). 
 
1) Extend the Scale Item structure with the required extension fields in extension include 

/SCMTMS/INCL_EEW_TC_SCALE_ITEM. Do the enhancements as described earlier 
within a new append structure and add the required extension fields there. 
 

2) Add a new scale base in customizing. 
 
a. In the IMG (SPRO) follow the path Transportation management -> Basic 

Functions -> Charge Calculation -> Data Source Binding for Charge Calculation -
> Define Scale Bases. 

b. Add a new entry and use the new field for the field assignment. 
c. Set the other properties accordingly. 
 

3) Enhance the Scale UI: Open Web Dynpro Component configuration 
/SCMTMS/WDCC_TCM_SCALE_ITM (package /SCMTMS/UI) Use the Web Dynpro 
enhancement concept to add a new column - the new field from the scale item structure 
will be available here The column visibility is controlled by TCM view exit class 
/SCMTMS/CL_UI_VIEWEXIT_TCM, method SCALE_ITEM_PROP. No changes should 
be necessary. 

 

9.2.2 Adding a new calculation base 

(Short summary – detailed description with examples will follow soon). 
 
1) Extend communication structure: Use the Extension Include for the calculation base 

structure /SCMTMS/INCL_EEW_TCC_CB Append a new field with the corresponding 
data element. The component name must be the same as on the underlying document. 
The field will be copied over to the internal communication structure and available in the 
engine automatically 
 

2) Add calculation base in customizing  In IMG go to  Transportation Management - Basic 
Functions - Charge Calculation - Data Source Binding for Charge Calculation - Define 
Calculation Bases Add new entry and use the new field for the field assignment. Set scale 
base and other properties 

 
3) Optionally implement BAdI or helper class 

If the calculation base needs additional logic, you can use the BAdI method 
GET_CALC_BASE_VALUES of BAdI /SCMTMS/TCC_BO_DATA_ACCESS . Please 
refer to the BAdI documentation for details. Set BAdI flag in calculation base customizing. 
You can also use the helper class approach, which allows you to extend existing helper 
classes. The interface /SCMTMS/IF_TCC_CALC_BASE is very similar to the BAdI 
interface. You can refer to existing helper classes /SCMTMS/CL_TCC_CB_*  for sample 
implementations. The BAdI or helper class is called after the value has been retrieved 
from the communication structure if a field assignment is provided as well. 

9.2.3 Adding a new resolution base 
(Short summary – detailed description with examples will follow soon). 
1) Adapt resolution base configuration. Add new resolution base to table 

/SCMTMS/C_RES_BS. This used to be customizing but is now delivered as control table. 
Only the resolution base name has to be maintained, all other fields are currently not 
used. 

 
2) Implement logic in BAdI: The Data Access Object provides a BAdI 

/SCMTMS/TCC_BO_DATA_ACCESS for customer implementations which will be called 



SAP Transportation Management 9.x™ - Enhancement Guide 
 

SAP Transportation Management 9.x™ - Enhancement Guide 

330 

330 

in case no standard implementation for the resolution base is found. The method 
GET_RES_BASE_KEYS needs to be implemented. Please refer to the BAdI 
documentation or the standard implementation for details.  

  
(This is a draft Version! To be completed in the next version).  

 

9.3 Master Data Objects 
 

(This is a draft Version! To be completed in the next version).  
 


